• Title/Summary/Keyword: active compound

Search Result 968, Processing Time 0.028 seconds

Applications of Mathematical Optimization Method for Chemical Industries (화학 산업에서 수학적 최적화 기법을 적용한 사례)

  • Kim, Eun-Yong;Heo, Soon-Ki;Lee, Kyu-Hwang;Lee, Hokyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.209-223
    • /
    • 2020
  • Executions of SCM in a chemical company of which divisions produce petrochemicals, compounds, batteries, IT material and medicine directly affect their own profit. Execution level of SCM or optimization is very important. This work presents activities of SCM and optimization of inefficient issues in several industrial divisions using mathematical optimization method. The meaning is not only academic research but also making a useful tool which active partner deals with in his work. It is explained how to do beforehand and afterward optimization problem. The benefits are mentioned in the sections. The first of examples would be cover supply plan optimization, optimal profit business plan, and scheduling of a stretching process of polarizer based on minimizing raw material loss in polarizer production. The second example would be cover the optimization of production/packaging plans to maximize productivity of Poly Olefin processes, and the third example is minimization of transition loss in the production of battery electrodes. The fourth example would be cover scheduling of vessel approaching to berth. Because transportation of large portion of raw material and products of petrochemical industry is dealt with vessel, scheduling of vessel approaching to berth is important at the shore of large difference of tide. The final example would be scheduling problem to minimization of change over time of ABS semi products.

Studies about the bioactive component analysis and an oral glucose tolerance test of Add-Omit-Saenghyeoryunbu-eum(AO-SHU) for confirmation of diabetes therapy (가감생혈윤부음(加減生血潤膚飮)의 당뇨병 치료효과 확인을 위한 생리활성성분 분석과 경구포도당부하 연구)

  • In, Jeongdo;Im, Daisig;Kim, Won-Ill
    • Herbal Formula Science
    • /
    • v.24 no.2
    • /
    • pp.80-99
    • /
    • 2016
  • Objectives : Instrumental chemical analysis was utilized to investigate the effect of Add-Omit-Saenghyeoryunbu-eum(AO-SHU) on diabetic treatment. One of the most exciting, yet also controversial, arguments is the safety and biological mechanisms of the natural medicine on human body. Therefore, the aim of this study is to provide a better understanding on bioactive chemical components, hazards of heavy metal contamination and biological mechanism of the diabetic medicine composed of 12 different natural herbs. Methods : To study bioactive compound and metallic component in the diabetic medicine in detail, LC-MS/MS (Liquid Chromatography-Mass/Mass), GC (Gas Chromatography) and ICP (Inductively Coupled Plasma) were utilized to characterize the extract of the diabetic medicine and the result was compared with 18 marker substances selected from literature survey. In addition, in vitro assay experiments including GPR 119 activity and human DGAT-1 inhibition, and OGTT (Oral Glucose Tolerance Test) were performed to verify the effectiveness of this medicine on diabetic treatment. Results : Out of 18 marker substances, 9 bioactive compounds were identified from LC-MS/MS analysis which include Citruline, Catalpol, Berberine, Ginsenoside Rb1, Ginsenoside Rg1, Oleanolic acid, β-Sitosterol, Mangiferin, and Schizandrin. ICP study on 245 residual pesticides revealed that 239 species were not detected but 6 species, Dimethomorph, Trifloxystrobin, Pyraclostrobin, Isoprocarb, Carbaryl and Flubendiamide, while the amounts are trace levels, below permitted concentrations. The biological activity was observed in vitro assay and Oral Glucose Tolerance Test(OGTT), which are consistent with a preliminary clinical test result, a drop in blood sugar level after taking this herbal medicine. Conclusions : Instrumental chemical analysis using LC-MS/MS, GC, and ICP was conducted successfully to identify bioactive compounds in AO-SHU for the treatment of diabetes, finding 9 bioactive compounds. Furthermore, in vitro assay experiments and OGTT show that AO-SHU has its biological activities, which imply that it can be a candidate for the future diabetes remedy.

Synthesis and pesticidal activity of ricinine derivatives (Ricinine 유도체(誘導體)의 합성(合成) 및 농약활성(農藥活性))

  • Kwon, Oh-Kyung;Lim, Soo-Kil;Hong, Su-Myeong;Lee, Sung-Eun;Kyung, Suk-Hun
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.24-31
    • /
    • 1998
  • Chemical derivative synthesis of ricinine, an active compound of Ricinus communis which showed high mortality against brown planthopper (Nilaparvata lugens), was performed to improve its pesticidal activity and the toxicity of 12 synthetic derivatives against major insect pests and phytopathogenic fungi were examined. Carbamate derivatives of ricinine could be synthesized from the precursor of ricinine, chloronorricinine and norricinine, whereas the derivatives were not synthesized from chlororicinic acid and ricinic acid having ketone group of pyridine ring. In organophosphates, reaction with oxon type of phosphate gave better yield than thiono type. Among the organophosphate derivatives of ricinine, thiono type of derivative structure gave $96.3%{\sim}100%$ mortality of the brown planthopper and the two-spotted spider mite (Tetranychus urticae) at 500 ${\mu}g/ml$ level. On the other hand, carbamate derivatives did not show insecticidal activity. In the fungicidal activity of ricinine derivatives, the derivative having amino radical at the 2 position of ricinine gave 85 to 100% of mycelium growth inhibition effect against ten major plant pathogens at the 200 ${\mu}g/ml$ level. In particular, the control value of the derivative on the rice blast (Pyricularia grisea) and barley powdery mildew (Erysiphe graminis) at the 250 ${\mu}g/ml$ level in vivo under greenhouse conditions was 92% and 96%, respectively.

  • PDF

Minimum Structural Requirements of R-phenoxy Substituents for Herbicidal Evaluation of O-(2-phenoxy)ethyl-N-aralkylcarbamate Analogues against Phytoene Desaturase (Phytoene Desaturase에 대한 O-(2-Phenoxy)ethyl-N-aralkylcarbamates 유도체의 제초성 평가를 위한 R-phenoxy 치환기들의 구조적인 요건)

  • Choi, Won-Seok;Lee, Jae-Whang;Hwang, Seung-Woo;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.1
    • /
    • pp.72-77
    • /
    • 2010
  • The minimum structural requirements of R-phenoxy substituents for herbicidal evaluation of O-(2-(R)-phenoxy)-ethyl-N-aralkylcarbamate (1-15) analogues against phytoene desaturase (PDS) based on the three dimensional quantitative structure-activity relationships (3D-QSARs: CoMFA and CoMSIA) were studied quantitatively. The correlativity and predictability ($r^2_{cv.}=0.753$ and $r^2_{ncv.}=0.964$) of the CoMFA 1 model were higher than those of the rest models. The PDS inhibitory activities from the optimized CoMFA 1 model were depend upon the steric field (44.0%), electrostatic field (36.3%), and hydrophobic field (19.6%) of O-(2-(R)-phenoxy)ethyl-Naralkylcarbamate analogues. From the CoMFA contour maps on the structure of the most active compound (5), if it has the steric favor at meta-, para-position on the phenoxy ring, the negative charge favor in meta-position and positive charge favor in the outside part of para-position, the inhibitory activity will be predicted to increase. Also, if ortho-, para-position, and outside of phenoxy ring are hydrophilic favor, and meta-position is hydrophobic favor, it is predicted that the inhibitory activity against PDS will be able to increase.

Induction of Microsomal Epoxide Hydrolase, rGSTA2, rGSTA3/5, and rGSTM1 by Disulfiram, but not by Diethyldithiocarbamate, a Reduced Form of Disulfiram

  • Kim, Sang-Geon;Kim, Hye-Jung
    • Toxicological Research
    • /
    • v.13 no.4
    • /
    • pp.339-347
    • /
    • 1997
  • Disulfiram (DSF) and diethyldithiocarbamate (DDC), a reduced form of DSF, protect the liver against toxicant-induced injury through inhibition of cytochrome P450 2E1. The effect of DSF and DDC on the levels of major hepatic microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST) expression was comparatively studied, given the view that these enzymes are involved in terminal detoxification events for high energy intermediates of xenobiotics. Treatment of rats with a single dose of DSF (20-200 mg/kg, po) resulted in 2- to 15-fold increases in the mEH mRNA level at 24 hr with the ED$_{50}$ value being noted as 60 mg/kg. The mEH mRNA level was elevated ~15-fold at 24 hr after treatment at the dose of 100 mg/kg, whereas the hepatic mRNA level was rather decreased from the maximum at the dose of 200 mg/kg, indicating that DSF might cause cytotoxicity at the dose. In contrast to the effect of DSF, DDC only minimally elevated the mEH mRNA level at the doses employed. DSF moderately increased the major GST mRNA levels in the liver as a function of dose, resulting in rGSTA2, rGSTA3/5 or rGSTM1 mRNA levels being elevated 3- to 4-fold at 24 hr post-treatment, whereas the rGSTM2 mRNA level was not altered. DDC, however, failed to stimulate the mRNA levels for major GST subunits, indicating that the reduced form of DSF was ineffective in stimulating the GST the expression. The effect of other organosulfides including aldrithiol, 2, 2'-dithiobis(benzothiazole) (DTB), tetramethylthiouram disulfide (TMTD) and allyl disulfide (ADS) on the hepatic mEH and GST mRNA expression was assessed in rats in order to further confirm the increase in the gene expression by other disulfides. Treatment of rats with aldrithiol (100 mg/kg, po) resulted in a 16-fold increase in the mEH mRNA level at 24 hr post-treatment. DTB, TMTD and ADS also caused 5-, 9- and 12-fold increases in the rnRNA level, respectively, as compared to control. Thus, all of the disulfides examined were active in stimulating the mEH gene in the liver. The organosulfides significantly increased the rGSTA2, rGSTA3, rGSTA5 and rGSTM1 mRNA levels at 24 hr after administration. In particular, aldrithiol was very efficient in stimulating the rGSTA and rGSTM genes among the disulfides examined. These results provide evidence that DSF and other sulfides effectively stimulate the mEH and major GST gene expression at early times in the liver and that DDC, a reduced form of DSF, was ineffective in stimulating the expression of the genes, supporting the conclusion that reduced form(s) of organosulfur compound(s) might be less effective in inducing the mEH and GST genes through the antioxidant responsive element(s).

  • PDF

The Effects of SO2 and NH3 on the N2O Reduction with CO over MMO Catalyst (MMO 촉매와 CO 환원제에 의한 N2O 분해에서 SO2 및 NH3 영향 연구)

  • Chang, Kil Sang;You, Kyung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.653-657
    • /
    • 2009
  • Nitrous oxide is a typical greenhouse gas which is produced from various organic or fossil fuel combustion processes as well as chemicals producing plants. $N_2O$ has a global worming potential of 310 times that of $CO_2$ on per molecule basis, and also acts as an ozone depleting material in the stratosphere. However, its removal is not easy for its chemical stability characteristics. Most SCR processes with several effective reducing agents generally require the operation temperature higher than $450^{\circ}C$, and the catalytic conversion becomes decreased significantly when NOx is present in the stream. Present experiments have been performed to obtain basic design data of actual application concerning the effects of $SO_2$ and $NH_3$ on the interim and long term activities of $N_2O$ reduction with CO over the mixed metal oxide (MMO) catalyst derived from a hydrotalcite-like compound precursor. The MMO catalysts used in the experiments, have shown prominent activities displaying full conversions of $N_2O$ near $200^{\circ}C$ when CO is introduced. The presence of $SO_2$ is considered to show no critical behavior as can be met in the $NH_3$ SCR DeNOx systems and the effect of $NH_3$ is considered to play as mere an impurity to share the active sites of the catalysts.

Changes in Glucosinolate Component Content in Urine After Ingestion of Fresh and Cooked Broccoli (신선한 브로콜리와 조리된 브로콜리 섭취 후 소변으로 배설되는 Glucosinolates 대사물질의 함량 변화)

  • Hwang, Eun-Sun
    • Korean journal of food and cookery science
    • /
    • v.26 no.6
    • /
    • pp.804-810
    • /
    • 2010
  • Sulforphane (SF) is a family of biologically active compound that is distributed widely in broccoli. Although studies in rodents have shown that these compounds are effective and versatile inhibitors of tumorigenesis, the role of dietary SF in protection against human cancers remains to be established. The objective of this study was to explore the quantitative relationship between the dietary intake of cruciferous vegetables and urinary excretion of SF. The effects of dietary broccoli on the body's ability to detoxify were studied in six male subjects between the ages of 22~30 years. Study included administering a glucosinolate-free diet for 8 days (control period). The broccoli diet was further subdivided into two periods; 250 g broccoli was fed per day during the first three days and 500 g broccoli was fed per day during the latter three days. After an 8-day washout period, a second experiment was conducted. The same protocol was used with the exception that uncooked broccoli was consumed. Urinary SF mercapturate was measured to determine the bioavailability of broccoli. The linear trend for mercapturate excretion was dose-dependent, resulting in 3.8- and 1.9-fold increase by the third and six days, respectively, compared to the control. Lower amount of SF-NAC conjugate was detected in cooked broccoli compared to fresh broccoli suggesting cooking may have caused a significant loss in glucosinolates in cruciferous vegetables. Therefore, SF can be used as a biomarker for intake of cruciferous vegetables.

Extraction, purification and properties of anti-complementary polysaccharide from Arecae Pericarpium (대복피로부터 항보체 활성다당의 추출, 정제 및 그 특성)

  • Kwon, Kyung-Sup;Shin, Kwang-Soon;Cho, Hong-Yon;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.308-314
    • /
    • 1992
  • To examine the characteristics of anti-complementary compounds from Arecae Pericarpium (the pericarps of Areca catechu) which showed the highest activity during our screening procedures, the extraction and purification were performed. AC-1 fraction from Arecae Pericarpium was purified by hot water extraction, methanol reflux, ethanol precipitation, dialysis and lyophilization. This compound had total sugar 48.2%, uronic acid 14.6% and protein 36.8%. Rhamnose, arabinose, mannose and galactose were found in sugar components. By cetavlon (cetyltrimethylammonium bromide) treatment AC-1 was fractionated to AC-2, AC-3 and AC-4. Among them, AC-2 showed the highest activity and yield. By periodate oxidation, AC-2 was deactivated, but had no change in activity by pronase digestion. Moreover active fractions, AC-2-IIIa and AC-2-IIIc isolated from AC-2 by two successive column chromatography using DEAE-Toyopearl $650C(Cl^-form)$ and Sephadex G-100. AC-2-IIIa was mainly made up of rhamnose, mannose, galactose and glucose, and AC-2-IIIc, mannose, galactose and glucose. These both polysaccharides were identified as homogeneous by gel filtration of Sepharose CL-4B and electrophoresis, and molecular weights of them were 120,000 and 15,000, respectively.

  • PDF

Suppression of the Expression of Cyclooxygenase-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists by 6-Shogaol (6-Shogaol의 Toll-like receptor 2, 3, 4 agonists에 의해서 유도된 cyclooxygenase-2 발현 억제)

  • Kim, Jeom-Ji;An, Sang-Il;Lee, Jeon-Su;Yun, Sae-Mi;Lee, Mi-Yeong;Yun, Hyeong-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.332-336
    • /
    • 2008
  • Ginger is widely used as a traditional herbal medicine. Both ginger and its extracts have been used to treat many chronic inflammatory conditions via the inhibition of nuclear factor-kappa B (NF-${\kappa}B$) activation, which results in the suppression of cyclooxygenase-2 (COX-2) expression. However, the mechanisms as to how ginger extracts mediate their health effects are largely unknown. Toll-like receptors (TLRs) trigger anti-microbial innate immune responses, recognizing conserved microbial structural molecules that are known as pathogen-associated molecular patterns. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$. The activation of NF- ${\kappa}B$ leads to the induction of inflammatory gene products, including cytokines and COX-2. This study reports the biochemical evidence that 6-shogaol, an active compound in ginger, inhibits NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Furthermore, 6-shogaol inhibited NF-${\kappa}B$ activation induced by the following downstream signaling components of the TLRs: MyD88, $IKK{\beta}$, and p65. These results imply that ginger can modulate immune responses that could potentially modify the risk of many chronic inflammatory diseases.

Hydrolysis Activity of ${\alpha}-Galactosidase$ from Bacillus licheniformis (Bacillus licheniformis로부터 생산된 ${\alpha}-Galactosidase$의 가수분해 활성)

  • Kim Hyun Suk;Lee Kyung-Seob;So Jae Ho;Yoon Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.328-333
    • /
    • 2004
  • The maximum productivity of ${\alpha}-galactosidase,$ capable of hydrolyzing completely ${\alpha}-D-l,6-galactopyranosyl$ linkages within oligomeric substrates such as melibiose, raffinose and stachyose to liberate galactose residue, was reached to 718 mU/ml in the culture filtrate of Bacillus licheniformis at death phase. The ${\alpha}-galactosidase$ was identified to show different efficiencies for hydrolyzing the ${\alpha}-galactooligosaccharides$ according to analysis of reaction products by both TLC and quantification of the liberated reducing sugars. The enzyme was active on ${\alpha}-galactooligosaccharides$ in the order of melibiose, raffinose, and stachyose. Though the hydrolyzing activity of enzyme was faintly inhibited by reaction products such as galactose, glucose and sucrose with amounts of five folds more than the added substrates (20 mM), the largest inhibition of enzyme activity was caused by galactose among the end products. Unknown compound, which migrated slower than melibiose on TLC, was detected during hydrolysis reaction of melibiose, suggesting that the ${\alpha}-galactosidase$ has a glycosyl transferase activity. In addition, the enzyme was able to hydrolyze efficiently raffinose and stachyose existed in the soluble extract of soybean meal.