• Title/Summary/Keyword: active compound

Search Result 968, Processing Time 0.031 seconds

Selection of Superior Resources through Analysis of Growth Characteristics and Physiological Activity of Schisandra chinensis Collection (오미자 수집종의 생육특성 및 생리활성 분석을 통한 우수자원 선발)

  • Han, Sin Hee;Jang, Jae Ki;Ma, Kyung Ho;Kim, Yae Jin;Kim, Seon Mi;Lee, Hee Jung;Hong, Chung Oui
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • Background: Various Schisandra chinensis (SC) varieties grow in diverse regions in Korea. However, there is no valid scientific evidence of these varieties. This study aimed to select the excellent resources in terms of the growth characteristics, antioxidant activities, and analysis of the active compounds of the SC collection. Method and Results: In total, 154 resources of SC were collected from various regions of Korea. The growth characteristics were measured by the number of fruit bunches, fruit number, and weight of 100 fruits. The antioxidant activities were investigated by analyzing the total flavonoid and total polyphenol contents and the radical scavenging activity of DPPH and ABTS. Schizandrin A, schizandrin c, gomisin a, and gomisin N were analyzed by HPLC. Each resource showed different growth characteristics. Among the antioxidative effects, the highest 20 resources showed high antioxidant activities in selected 29 resources. Analysis of the SC lignan index showed that all resources contained more than 1.16% of active compounds. Conclusions: All of the selected 29 SC resources were shown to have excellent growth characteristics, antioxidant activities, and bioactive compound richness. Especially, SC-004, SC-007, and SC-154 showed the best growth characteristics, and SC-22, SC-40, and SC-45 showed the best antioxidant activities and bioactive compound richness.

Relationship of Saponin and Non-saponin for the Quality of Ginseng (인삼의 품질과 약리활성 물질과의 상관성)

  • Nam, Gi-Yeol;Go, Seong-Ryong;Choe, Gang-Ju
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.274-283
    • /
    • 1998
  • It has generally been accepted that quality of ginseng should be determined not by the content of a single component but by composition and balance of total active principles. However, there still can be an exception with a product in which a given ginsenoside is used for the treatment of a specific disease. Although ginsenosides have been regarded to be major active components of ginseng and employed as index components for the quality control, it does not consistent with the traditional concept on ginseng quality creterion; main root has been more highly appreciated than the lateral or fine root. Content of ginsenosides in the lateral or fine root is much higher than that in main root. However, the ratio of protopanaxadiol (PD) and protopanaxatriol (PT) saponins existing in various part of ginseng root is greatly different. The ratio of PD/PT saponins in main root is well balanced but the thinner the root is the higher the ratio. Thus far, a total of 34 different kinds of ginsenosides have been isolated from Korean (red) ginseng, and their pharmacological activities were elucidated partly. Interestingly, different ginsenoside shows similar or contrary effects to each other in biological systems, thus indicating the significance of absolute content of single ginsenoside as well as compositional patterns of each ginsenoside. Therefore, pharmacological activities of ginseng should be determined as a wholly concept. In these regards, standardization of ginseng material (fresh ginseng root) should be preceded to the standardization of ginseng products because ginsenoside content and non-saponin active principles such as polysaccharides and nitrogen (N)-containing compound including proteins are significantly different from part to part of the root. In other words, the main root contains less ginsenosides than other lateral or fine roots. Contents of polysaccharides and N-containing compound in main root is higher. However, the quality control of ginseng products focused on non-saponin compounds has limitation in applying to the analytical method, because of the difficult chemical analysis of these compounds. Content of ginsenosides, and ratios of PD/PT and ginsenoside Rb,/Rg, are inversely proportional to the diameter of ginseng root. Therefore, these can be served as the chemical parameters for the indirect method of evaluating from what part of the root does the material originate. Furthermore, contents of polysaccharides and N-containing compounds show inverse relationship to saponin content. Therefore, it seems that index for analytical chemistry of saponin can be applied to the indirect method of evaluating not only saponin but also non-saponin compounds of ginseng. From these viewpoints, it is strongly recommended that quality of ginseng or ginseng products be judged not only by the absolute content of given ginsenoside but also by varieties and compositional balance of ginsenosides, including contents of non-saponin active principles.

  • PDF

Systematic analysis of the pharmacological function of Schisandra as a potential exercise supplement

  • Hong, Bok Sil;Baek, Suji;Kim, Myoung-Ryu;Park, Sun Mi;Kim, Bom Sahn;Kim, Jisu;Lee, Kang Pa
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.4
    • /
    • pp.38-44
    • /
    • 2021
  • [Purpose] Exercise can prevent conditions such as atrophy and degenerative brain diseases. However, owing to individual differences in athletic ability, exercise supplements can be used to improve a person's exercise capacity. Schisandra chinensis (SC) is a natural product with various physiologically active effects. In this study, we analyzed SC using a pharmacological network and determined whether it could be used as an exercise supplement. [Methods] The active compounds of SC and target genes were identified using the Traditional Chinese Medicine Database and Analysis Platform (TCMSP). The active compound and target genes were selected based on pharmacokinetic (PK) conditions (oral bioavailability (OB) ≥ 30%, Caco-2 permeability (Caco-2) ≥ -0.4, and drug-likeness (DL) ≥ 0.18). Gene ontology (GO) was analyzed using the Cytoscape software. [Results] Eight active compounds were identified according to the PK conditions. Twenty-one target genes were identified after excluding duplicates in the eight active compounds. The top 10 GOs were analyzed using GO-biological process analysis. GO was subsequently divided into three representative categories: postsynaptic neurotransmitter receptor activity (53.85%), an intracellular steroid hormone receptor signaling pathway (36.46%), and endopeptidase activity (10%). SC is related to immune function. [Conclusion] According to the GO analysis, SC plays a role in immunity and inflammation, promotes liver metabolism, improves fatigue, and regulates the function of steroid receptors. Therefore, we suggest SC as an exercise supplement with nutritional and anti-fatigue benefits.

Characterization of Volatile Compounds in Low-Temperature and Long-Term Fermented Baechu Kimchi (묵은 배추김치의 휘발성 성분 특성)

  • Kim, Ji-Yun;Park, Eun-Young;Kim, Young-Suk
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.3
    • /
    • pp.319-324
    • /
    • 2006
  • Volatile compounds in low-temperature and long-term fermented Baechu kimchi were extracted by high vacuum sublimation(HVS), and then analyzed by gas chromatography/mass spectrometry(GC-MS). A total of 62 compounds, including 7 sulfur-containing compounds, 8 terpenes, 5 esters, 8 acids, 15 alcohols, 2 nitrites, 2 ketones, 11 aliphatic hydrocarbons and 4 miscellaneous compounds, were found in low-temperature and long-term fermented Baechu kimchi. Among them, acetic acid and butanoic acid were quantitatively dominant. Aroma-active compounds were also determined by gas chromatography/olfactometry(GC-O) using aroma extract dilution analysis(AEDA). A total of 16 aroma-active compounds were detected by GC-O. Butanoic acid was the most potent aroma-active compound with the highest FD factor($Log_3FD$) followed by linalool, acetic acid, 2-vinyl-4H-1,3-dithin and 3-methyl-1-butanol. The major aroma-active compounds, such as acetic acid and butanoic acid, were related to sour and rancid or notes.

Immuno-Regulatory Activities of an Isoflavone Glycoside, 4', $6-Dimethoxylsoflavone-7-O-{\beta}-D-Glucopyranoside$ and the Crude Extract Isolated from Amorpha fruticosa LINNE

  • Kim, Jung-Hwa;Kim, Cheol-Hee;Kwon, Min-Cheol;Kim, Hyou-Sung;Lee, Kang-Yoon;Lee, Hyun-Jung;Kang, Ha-Young;Lee, Hak-Ju;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.2
    • /
    • pp.63-69
    • /
    • 2006
  • The methanolic (MeOH) extract of A. fruticosa bark, which showed immune-regulatory activities, was separated to purify an active compared by means of a multi-stage column chromatography. This resulted in the isolation and characterization of an isoflavone glycoside named 4', $6-Dimethoxyisoflavone-7-O-{\beta}-D-glucopyranoside$. Immuno-regulatory activities of the crude extract of Amorpha fruticosa LINNE bark were compared with that of an isoflavone glycoside (4', $6-dimethoxyisoflavone-7-O-{\beta}-D-glucopyranoside$). The crude methanolic extract of A. fruticosa and purified single compound showed 16% of relatively low cytotoxicity at a maximum concentration of 1.0 g/L in cultivated normal human lung cell line (HEL299). Cell growth of human T cells was increased up to 15%, 0.5 g/L of the crude extract added group. This was higher than a single compound added one. On the other hand, specific production rates of IL-6 and $TNF-{\alpha}$ from T cell were higher in the purified compound treat group ($0.82{\times}10^{-4}\;pg/cell$ and $1.08{\times}10^{-4}\;pg/cell$, respectively), compared to 0.5 g/L of the crude extract added group ($0.65{\times}10^{-4}\;pg/cell$ and $0.84{\times}10^{-4}\;pg/cell$, respectively). In addition, the growth of NK-92MI cells incubated with the crude extract was higher up to 56% over the cells grown with a single compound (0.5 g/L). In overall, the crude extract showed relatively higher immuno-regulatory activities compared with a single compound, probably due to the synergic effect given by other substances existed in the crude extract. Even though the siolated compound stimulated higher secretion of cytokines from human T cells.

Conversion of Ginsenoside Rd to Compound K by Crude Enzymes Extracted from Lactobacillus brevis LH8 (Lactobacillus brevis LH8이 생산하는 효소에 의한 Ginsenoside Rd의 Compound K로의 전환)

  • Quan, Lin-Hu;Liang, Zhiqi;Kim, Ho-Bin;Kim, Se-Hwa;Kim, Se-Young;Noh, Yeong-Deok;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • Ginsenosides have been regarded as the principal components responsible for the pharmacological and biological activities of ginseng. Absorption of major ginsenosides from the gastrointestinal tract is extremely low, when ginseng is orally administered. In order to improve absorption and its bioavailability, conversion of major ginsenosides into more active minor ginsenoside is very much required. Here, we isolated lactic acid bacterium (Lactobacillus brevis LH8) having ${\beta}-glucosidase$ activity from Kimchi. Bioconversion ginsenoside Rd by this bacterium in different temperatures was investigated. The maximum activities of crude enzymes precipitated by ethanol were shown in $30^{\circ}C$ and then gradually decreased. In order to compare the effect of pH, the crude enzymes of L. brevis LH8 were mixed in 20mM sodium phosphate buffer (pH 3.5 to pH 8.0) and reacted ginsenoside Rd. Ginsenoside Rd was almost hydrolyzed between pH 6.0 and pH 12.0, but not hydrolyzed under pH 5.0 and above pH 13.0. Ginsenoside Rd was hydrolyzed after 48 h incubation, whereas ginsenoside F2 appeared from 48 h to 72 h, and ginsenoside Rd was almost converted into compound K after 72 h.

Biosynthesis of rare 20(R)-protopanaxadiol/protopanaxatriol type ginsenosides through Escherichia coli engineered with uridine diphosphate glycosyltransferase genes

  • Yu, Lu;Chen, Yuan;Shi, Jie;Wang, Rufeng;Yang, Yingbo;Yang, Li;Zhao, Shujuan;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.116-124
    • /
    • 2019
  • Background: Ginsenosides are known as the principal pharmacological active constituents in Panax medicinal plants such as Asian ginseng, American ginseng, and Notoginseng. Some ginsenosides, especially the 20(R) isomers, are found in trace amounts in natural sources and are difficult to chemically synthesize. The present study provides an approach to produce such trace ginsenosides applying biotransformation through Escherichia coli modified with relevant genes. Methods: Seven uridine diphosphate glycosyltransferase (UGT) genes originating from Panax notoginseng, Medicago sativa, and Bacillus subtilis were synthesized or cloned and constructed into pETM6, an ePathBrick vector, which were then introduced into E. coli BL21star (DE3) separately. 20(R)-Protopanaxadiol (PPD), 20(R)-protopanaxatriol (PPT), and 20(R)-type ginsenosides were used as substrates for biotransformation with recombinant E. coli modified with those UGT genes. Results: E. coli engineered with $GT95^{syn}$ selectively transfers a glucose moiety to the C20 hydroxyl of 20(R)-PPD and 20(R)-PPT to produce 20(R)-CK and 20(R)-F1, respectively. GTK1- and GTC1-modified E. coli glycosylated the C3-OH of 20(R)-PPD to form 20(R)-Rh2. Moreover, E. coli containing $p2GT95^{syn}K1$, a recreated two-step glycosylation pathway via the ePathBrich, implemented the successive glycosylation at C20-OH and C3-OH of 20(R)-PPD and yielded 20(R)-F2 in the biotransformation broth. Conclusion: This study demonstrates that rare 20(R)-ginsenosides can be produced through E. coli engineered with UTG genes.

Purification and Characterization of Antistaphylococcal Substance from Pseudomonas sp. KUH-001

  • Hwang, Se-Young;Lee, So-Hee;Song, Kook-Jong;Kim, Yong-Pil;Kawahara, Kazuyoshi
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.111-118
    • /
    • 1998
  • A bacterium producing unique antistaphylococcal substance (ASS) was isolated from soil samples. The isolated strain KUH-001 was identified to belong to Pseudomonas species from the characteristic properties of its fluorescence and cellular 3-hydroxy fatty acid composition, etc. The ASS component was purified by procedures employing activated carbon adsorption, column chromatography with silica gel, preparative TLC and HPLC. This compound could also be purified mainly by repeating of trituration and precipitation with chilled ether. Purified ASS with a m.p. value of $140~142^{\circ}C$ showed marked stability at high temperature (at $121^{\circ}C$ for 10 min) and extreme pHs (in 1N HC1 and 1N NaOH for 1 day) without significant loss of antibiotic activity. From spectral data of UV, IR, NMR, and FAB-MS, the compound was elucidated as 2-heptyl-4-hydroxyquinoline N-oxide (HHQO). Under the conditions employed, HHQO exhibited a narrow antimicrobial spectrum. active particularly against Staphylococcus aureus including the methicillin resistant strain. Moreover, it did not induce resistance, and besides, interacted synergistically with certain antibiotics such as vancomycin or erythromycin.

  • PDF

Evaluation of the Biological Activities of Marine Bacteria Collected from Jeju Island, Korea, and Isolation of Active Compounds from their Secondary Metabolites

  • Kim, Hyun-Soo;Zhang, Chao;Lee, Ji-Hyeok;Ko, Ju-Young;Kim, Eun-A;Kang, Nalae;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.215-222
    • /
    • 2014
  • To explore marine microorganisms with medical potential, we isolated and identified marine bacteria from floats, marine algae, animals, and sponges collected from Jeju Island, Korea. We isolated and identified 21 different strains from the marine samples by 16S rRNA analysis, cultured them in marine broth, and extracted them with ethyl acetate (EtOAc) to collect secondary metabolite fractions. Next, we evaluated their anti-oxidative and anti-inflammatory effects. Among the 21 strains, the secondary metabolite fraction of Bacillus badius had both strong antioxidant and anti-inflammatory activity, and thus was selected for further experiments. An antioxidant compound detected from the secondary metabolite fraction of B. badius was purified by preparative centrifugal partition chromatography (n-hexane:EtOAc:methanol:water, 4:6:4:6, v/v), and identified as diolmycin A2. Additionally, diolmycin A2 strongly inhibited nitric oxide production. Thus, we successfully identified a significant bioactive compound from B. badius among the bacterial strains collected from Jeju Island.

Conjugated Oligomers Combining Fluorene and Thiophene Units : Towards Supramolecular Electronics

  • Leclere, Ph.;Surin, M.;Sonar, P.;Grimsdale, A.C.;Mllen, K.;Cavallini, M.;Biscarini, F.;Lazzaroni, R.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.228-228
    • /
    • 2006
  • Conjugated oligomers, used as models for fluorene-thiophene copolymers, are compared in terms of the microscopic morphology of thin deposits and the optical properties. The AFM images and the solid-state absorption and emission spectra are interpreted in line with the structural data, in terms of the assembly of the conjugated molecules. The compound with a terthiophene central unit and fluorene end-groups shows well-defined monolayer-by-monolayer assembly into micrometer-long strip-like structures, with a crystalline herringbone-type organization within the monolayers. Polarized confocal microscopy indicates a strong orientation of the crystalline domains within the stripes. In contrast, the compound with a terfluorene central unit and thiophene end groups forms no textured aggregates. The difference in behavior between the two compounds most probably originates from their different capability of forming densely-packed assemblies of ${\pi-pi}$ interacting molecules. These assemblies are used as active elements in organic field effect transistors designed by using soft lithography technique.

  • PDF