• Title/Summary/Keyword: activation function

Search Result 1,504, Processing Time 0.033 seconds

IQGAP1, a signaling scaffold protein, as a molecular target of a small molecule inhibitor to interfere with T cell receptor-mediated integrin activation

  • Li, Lin-Ying;Nguyen, Thi Minh Nguyet;Woo, Eui Jeon;Park, Jongtae;Hwang, Inkyu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.361-373
    • /
    • 2020
  • Integrins such as lymphocyte function-associated antigen -1 (LFA-1) have an essential role in T cell immunity. Integrin activation, namely, the transition from the inactive conformation to the active one, takes place when an intracellular signal is generated by specific receptors such as T cell receptors (TCRs) and chemokine receptors in T cells. In an effort to explore the molecular mechanisms underlying the TCR-mediated LFA-1 activation, we had previously established a high-throughput cell-based assay and screened a chemical library deposited in the National Institute of Health in the United States. As a result, several hits had been isolated including HIKS-1 (Benzo[b]thiophene-3-carboxylic acid, 2-[3-[(2-carboxyphenyl) thio]-2,5-dioxo-1-pyrrolinyl]-4,5,6,7-tetrahydro-,3-ethyl ester). In an attempt to reveal the mode of action of HIKS-1, in this study, we did drug affinity responsive target stability (DARTS) assay finding that HIKS-1 interacted with the IQ motif containing GTPase activating protein 1 (IQGAP1), a 189 kDa multidomain scaffold protein critically involved in various signaling mechanisms. Furthermore, the cellular thermal shift assay (CETSA) provided compelling evidence that HIKS-1 also interacted with IQGAP1 in vivo. Taken together, it can be concluded that HIKS-1 interferes with the TCR-mediated LFA-1 activation by interacting with IQGAP1 and thereby disrupting the signaling pathway for LFA-1 activation.

I/E Selective Activation based Knowledge Reconfiguration mechanism and Reasoning

  • Shim, JeongYon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.5
    • /
    • pp.338-344
    • /
    • 2014
  • As the role of information collection becomes increasingly important in the enormous data environment, there is growing demand for more intelligent information technologies for managing complex data. On the other hand, it is difficult to find a solution because of the data complexity and big scaled amount. Accordingly, there is a need for a special intelligent knowledge base frame that can be operated by itself flexibly. In this paper, by adopting switching function for signal transmission in the synapse of the human brain, I/E selective activation based knowledge reconfiguring mechanism is proposed for building more intelligent information management system. In particular, knowledge network design, a special knowledge node structure, Type definition, I/E gauge definition and I/E matching scheme are provided. Using these concepts, the proposed system makes the functions of activation by I/E Gauge, selection and reconfiguration. In a more efficient manner, the routing and reasoning process was performed based on the knowledge reconfiguration network. In the experiments, the process of selection by I/E matching, knowledge reconfiguration and routing & reasoning results are described.

Selective Squib Activation and Check Circuit Design for Safeguarded Multi-Phase Missions (안전조치 포함 다단계 임무 수행을 위한 선택적 스퀴브 도화 및 점검 회로 설계)

  • Lee, Heoncheol;Kwon, Yongsung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.684-696
    • /
    • 2018
  • The mission in missile systems can be conducted with multiple phases according to the characteristics of the systems and the targets. The safeguarded multi-phase mission includes a safeguarded phase before launch for considering the safety of operators in unexpected squib activation. However, the safeguard function should be disabled after launch to complete the mission. Therefore, the squib system needs to be selectively activated according to the phases. This paper presents a selective squib activation and check circuit design for safeguarded multi-phase missions in missile systems. The presented circuit design was implemented with various electronic components including a field-programmable gate array(FPGA). Its functions and performance were validated by both many ground tests and several flight tests.

Prediction of Concrete Strength by a Modified Rate Constant Model (수정 반응률 상수 모델에 의한 콘크리트의 강도의 예측)

  • 한상훈;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.155-158
    • /
    • 1999
  • This paper discusses the validity of models to predict the compressive strength of concrete subjected to various temperature histories and the shortcomings of existing rate constant model and apparent activation energy concept. Based on the discussion, a modified rate constant model is proposed. The modified rate constant model, in which apparent activation energy is a nonlinear function of curing temperature and age, accurately estimates the development of the experimental compressive strengths by a few researches. Also, the apparent activation energy of concrete cured with high temperature decreases rapidly with age, but that cured with low temperature decreases gradually with age. Finally a generalized model to predict apparent activation energy and compressive strength is proposed, which is based on the regression results.

  • PDF

Macrophage activation by glycoprotein isolated from Dioscorea batatas

  • Huong, Pham Thi Thu;Jeon, Young-Jin
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.167-172
    • /
    • 2011
  • We demonstrate that glycoprotein isolated from Dioscorea batatas (GDB) activates macrophage function. Analysis of the infiltration of macrophages into peritoneal cavity showed GDB treatment significantly increased the recruitment of macrophages into the peritoneal cavity. In order to further confirm and investigate the mechanism of GDB on macrophage activation, we analyzed the effects of GDB on the cytokine expression including IL-$1{\beta}$, TNF-${\alpha}$, and IL-6 in mouse peritoneal macrophages. GDB increased the expression of IL-$1{\beta}$, TNF-${\alpha}$, and IL-6. Cytokine induction by GDB was further confirmed by RT-PCR and ELISA in mouse macrophage cell line, RAW264.7 cells. Treatment of RAW264.7 cells with GDB produced strong induction of NF-${\kappa}B$ DNA binding and MAPK phosphorylation, markers for macrophage activation and important factors for cytokine gene expression. Collectively, this series of experiments indicates that GDB stimulates macrophage activation.

Structural Study of the Activated Carbon Fiber using Laser Raman Spectroscopy

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.127-130
    • /
    • 2008
  • This study aims to find a correlation between XRD and Raman result of the activated carbon fibers as a function of its activation degrees. La of the isotropic carbon fiber prepared by oxidation in carbon dioxide gas have been observed using laser Raman spectroscopy. The basic structural parameters of the fibers were evaluated by XRD as well, and compared with Raman result. The La of the carbon fibers were measured to be 25.5 ${\AA}$ from Raman analysis and 23.6 ${\AA}$ from XRD analysis. La of the ACFs were 23.6 ${\AA}$ and 20.4 ${\AA}$, respectively, representing less ordered through activation process. It seems that the $I_D/I_G$ of Raman spectra were related to crystallite size(La). Raman spectroscopy has demonstrated its unique ability to detect structural changes during the activation of the fibers. There was good correlation between the La value obtained from Raman and XRD.

Activation-induced Cytidine Deaminase in B Cell Immunity and Cancers

  • Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.230-239
    • /
    • 2012
  • Activation-induced cytidine deaminase (AID) is an enzyme that is predominantly expressed in germinal center B cells and plays a pivotal role in immunoglobulin class switch recombination and somatic hypermutation for antibody (Ab) maturation. These two genetic processes endow Abs with protective functions against a multitude of antigens (pathogens) during humoral immune responses. In B cells, AID expression is regulated at the level of either transcriptional activation on AID gene loci or post-transcriptional suppression of AID mRNA. Furthermore, AID stabilization and targeting are determined by post-translational modifications and interactions with other cellular/nuclear factors. On the other hand, aberrant expression of AID causes B cell leukemias and lymphomas, including Burkitt's lymphoma caused by c-myc/IgH translocation. AID is also ectopically expressed in T cells and non-immune cells, and triggers point mutations in relevant DNA loci, resulting in tumorigenesis. Here, I review the recent literatures on the function of AID, regulation of AID expression, stability and targeting in B cells, and AID-related tumor formation.

Effects of Herba Cirsii Extracts on Glucose Uptake in OP9 Cells (OP9 세포에서 포도당 흡수능에 대한 대계 추출물의 효과)

  • Kim, Mi Seong;Song, Je Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.195-199
    • /
    • 2014
  • Although the Herba Cirsii is known to posses beneficial health effects, the anti-diabetic effects and the mechanism of action have not been elucidated. In the present study we have shown that Herba Cirsii Extract (HCE) can stimulate glucose uptake in OP9 adipocytes. Unlike insulin, HCE did not stimulate the Ser473 phosphorylation and activation of Akt. The increasing effects of HCE on glucose uptake were inhibited by PD680509 and compound C pretreatment, which means that the glucose uptake effects by HCE were carried out by extracelluar signal-regulated kinase1/2(ERK1/2) and AMP-activated protein kinase (AMPK) activation. Further studies revealed that HCE stimulated glucose transport occurs through a mechanism involving ERK1/2 activation and AMPK activation.

Integrin activation

  • Ginsberg, Mark H.
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.655-659
    • /
    • 2014
  • Integrin-mediated cell adhesion is important for development, immune responses, hemostasis and wound healing. Integrins also function as signal transducing receptors that can control intracellular pathways that regulate cell survival, proliferation, and cell fate. Conversely, cells can modulate the affinity of integrins for their ligands a process operationally defined as integrin activation. Analysis of activation of integrins has now provided a detailed molecular understanding of this unique form of "inside-out" signal transduction and revealed new paradigms of how transmembrane domains (TMD) can transmit long range allosteric changes in transmembrane proteins. Here, we will review how talin and mediates integrin activation and how the integrin TMD can transmit these inside out signals.

Effectiveness of Respiratory Exercise for Stroke Patients: A Sytematic Reiview (뇌졸중 환자를 위한 호흡 운동의 효과성: 체계적 고찰)

  • Myeong-Ho Lee;Myoung-Kwon Kim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.3
    • /
    • pp.85-97
    • /
    • 2023
  • PURPOSE: This study analyzed the effectiveness of respiratory exercise in stroke patients conducted in Korea over the past 10 years (2012-2023). METHODS: Using the RISS, KCI, KISS, and NDSL databases, previous studies on stroke and respiratory exercise were searched, and relevant articles were collected following the PRISMA guidelines. Twelve articles were selected, and the quality of the studies was evaluated using the PEDro scale. RESULTS: Twelve studies were selected, and the qualitative evaluation of these studies showed that five articles received a score of six out of 10, while five articles received a score of five. The remaining two articles received scores of four and three, respectively. The intervention duration for respiratory exercise ranged from 20 to 30 minutes per session, with a frequency of three to five sessions per week, conducted over a period of three to eight weeks. These results indicated that respiratory exercise effectively improved the respiratory function, physical function, and respiratory muscle activation in stroke patients. CONCLUSION: Respiratory exercise was reported to have a positive affect the respiratory function, physical activity, and respiratory muscle activation in stroke patients.