• Title/Summary/Keyword: activation energy for thermal decomposition

Search Result 82, Processing Time 0.024 seconds

Thermogravimetric Analysis of Rice Husk Flour for a New Raw Material of Lignocellulosic Fiber-Thermoplastic Polymer Composites

  • Kim, Hyun-Joong;Eom, Young-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.59-67
    • /
    • 2001
  • Rice husk flours were analyzed by chemical composition and thermogravimetric methods in nitrogen atmosphere to discuss its feasibility as a raw material for manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite. It was revealed in the chemical composition analysis that rice husk flour was composed of moisture, 5.0%; lignin, 21.6%; holocellulose, 60.8%; ash, 12.6%. In the thermogravimetric analysis (TGA), thermal decomposition behavior of rice husk flour from room temperature to $350^{\circ}C$ was similar to that of wood flour, but rice husk flour was more thermally stable from 350 to $800^{\circ}C$ than wood flour because of higher silica content in the rice husk flour and smaller particle size of rice husk flour. The activation energy of thermal decomposition was evaluated using Flynn & Wall expression. As the thermal decomposition proceeded in rice husk flour, the activation energy of thermal decomposition appeared almost constant up to ${\alpha}=0.25$, but thereafter increased. Activation energy of thermal decomposition in wood flour, however, decreased steeply up to ${\alpha}=0.3$, but thereafter remained almost constant. From the results, rice husk flour was thought be a substitute for wood flour in manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite in the aspect of thermal decomposition.

  • PDF

Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy using Cationic Initiator (양이온 개시제를 이용한 열경화성 액정 에폭시의 열분해 활성화에너지)

  • Jung, Ye Ji;Hyun, Ha Nuel;Cho, Seung Hyun
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.180-185
    • /
    • 2021
  • Due to the formation of random three dimensional network structure, which cause a lot of scattering of phonons, the thermal conductivity is low when the liquid crystalline epoxy is cured with amine-based curing agent. This problem is solved by using a cationic initiator that can make mesogen groups to be stacked structure. In this experiment, the thermal stability is compared by investigating the activation energy of isothermal decomposition through TGA of an epoxy using an amine-based curing agent and a cationic initiator. As a result, the energy of the activation of the epoxy using a cationic initiator is high. Compared with the previous experiments, the thermal stability is similar to the thermal conductivity.

Comparison Study of Thermal Decomposition Characteristics of Wattle & Pine Tannin-based Adhesives

  • Kim, Sumin;Lee, Young-kyu;Kim, Hyun-Joong;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.34-41
    • /
    • 2002
  • This study investigated the thermogravimetric analysis of two types of cured tannin-based adhesives from wattle and pine, with three hardeners of paraformaldehyde, hexamethylenetetramine and TN (tris(hydroxyl)nitromethan), at a temperature of 170℃ and a heating rate of 5, 10, 20 and 40℃/min for 10 minutes. The 5 minutes cured wattle tannin-based adhesive with each hardener at 170℃ was also tested to compare the degree of curing. It was found that thermogravimetric analysis could be used to measure the degree of curing of a thermosetting adhesive. The TG-DTG curves of all the adhesive systems were similar and showed three steps in a similar way to a phenolic resin. This means that each adhesive system is well cross-linked. However, a high thermal decomposition rate was shown at 150 to 400℃ in the case of the pine tannin sample with TN (tris(hydroxyl)nitromethan). The Flynn & Wall expression was used to evaluate the activation energy for thermal decomposition. As the level of conversion (𝛼) increased, the activation energy of each system increased. The activation energy of the wattle tannin-based adhesive with paraformaldehyde was higher than the others.

Thermal Decomposition Energy of Liquid Crystalline Epoxy (열경화성 액정 에폭시 수지의 열분해 활성화에너지)

  • Seung Hyun Cho
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • A liquid crystalline thermosetting epoxy was synthesizes with DGE-DHMS and 1-Methyl Imidazole. To investigate thermal stability, activation energies for thermal decomposition were calculated via Flynn-Wall-Ozawa method and Kissinger method with the data obtained from TGA analysis. The result showed that there were no differences in thermal decomposition behavior between liquid crystalline phases and isotropic phase and also the same thermal decomposition mechanism was applied to the entire process.

Thermal Decomposition Kinetics of Polyurethane Elastomers Prepared with Different Dianiline Chain Extenders

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.122-127
    • /
    • 2016
  • Thermal decomposition kinetics for two different types of polyurethane elastomers prepared with 2,2'-dichloro-4,4'-methylenedianiline (MOCA) and 3,5-dimethyl-thiotoluenediamine (Ethacure-300), based on PTMG/TDI isocyanate prepolymer, were studied using non-isothermal thermogravimetric analysis (TGA). Thermograms were obtained and analyzed using Friedman (FR) and Kissinger-Akahira-Sunose (KAS) methods for activation energy, $E_a$. The results obtained showed that decomposition reaction of both samples was observed similarly to occur through three different stages, i.e., initial stage with vaporization of low molecular weight materials, second stage of urethane linkage decompositions, and later stage of polyol segment decompositions. However, activation energy values at each stage for the sample cured with Ethacure-300 was much lower than those for the sample with MOCA, exhibiting relatively lower thermal stability for the sample with Ethacure-300 than that with MOCA.

A Study of Thermal Decomposition Characteristics and Toxicity of Product on PS/SAN/ABS (PS/SAN/ABS의 열분해특성과 생성물의 독성에 관한 연구)

  • Kang Yun Jin;Lee Nae Woo;Seul Soo Duk
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.16-25
    • /
    • 2000
  • To estimate the thermal characteristics and toxic parameters on styrene copolymers, We have investigated the activation energy, physical features and generation possibility of toxic material like narcotic gases. The activation energy was 25${\~}$50 Kcal/mol by the Kissinger's and DSC method at high temperature decomposition. It will be good information to estimate the possibility of fire occurrence. From calculations of FED, the values of $LC_{50}$ for PS, SAN and ABS were checked as 8,580, 265 and 308 $mg/m^3$ The mechanisms of thermal decomposition were mainly estimated by main chain scission, not by side group on FT-IR analysis.

  • PDF

A Consideration on Thermal Stability of the PVAc Latex Adhesive (PVAc 라텍스 접착제의 열적 안정성에 대한 고찰)

  • 권재범;이내우;설수덕
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.81-87
    • /
    • 2003
  • Latex polymers are widely used for adhesive, binder, paint etc. Especially the PVAc(Polyvinyl acetate) latex which manufactured by vinyl acetate and vinyl alcohol as protective colloid is a useful environmentally friendly adhesive. To increase useful property of PVAc latex, this study was carried out for checking thermal characteristics and physical condition of PVAc latex by DSC, FT-IR, Pyrolyzer GC-MS. The activation energies of thermal decomposition for 40, 48, 56, 64% solid content of PVAc latex were found as 28.1-36.0kcal/mol by Kissinger's method and 17.2-22.0kcal/mol by DSC method. Actually, reasonable solid content could be consiered as 56% because of activation energy and adhesive characteristics. According to the effect of protective colloid for 4, 10, 15, 20wt%, the activation energy shows same tendency to both method and in case of l5wt% has been found as the highest activation energy. The mechanism of thermal decomposition was mainly estimated by main chain scission, not by side group on FT-IR analysis. Main component of Pyrolzer GC-MS result were consisted of $CH_3COOH$, $CH_3$, $H_2O$ and light gases(CO, $CO_2$, $CH_4$ etc).

Preparation of Quaternary Energetic Composites by Crystallization and Their Thermal Decomposition Characteristics (결정화에 의한 4성분계 에너지 복합체 제조 및 열분해 특성)

  • Kim, Byoung-Soo;Kim, Jae-Kyeong;Ahn, Ik-Sung;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.178-185
    • /
    • 2019
  • Three spherical quaternary composites composed of metal/metal oxide/high explosive/oxidizer were prepared by a crystallization/agglomeration process. From the characteristics of composites by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the shortening of the decomposition zone of high explosives in the quaternary composite was observed, which may be attributed to the autocatalytic reaction caused by $ClO_2$ or HCl which are ammonium perchlorate (AP) degradation products. The activation energy analysis showed that the activation energy abruptly decreases at the end of the decomposition zone of high explosives, and it was considered to be caused by $HNO_2$ which is common in decomposition products of high explosives. The activation energy predicted from complex pyrolysis results by the distributed activation energy model (DAEM) showed much better in accuracy than those by model-fitting methods such as Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa models.

Radiation Effects on ${\gamma}$-Ray Irradiated Ethylene Propylene Rubber using Dielectric Analysis

  • Kim, Ki-Yup;Ryu, Boo-Hyung;Lee, Chung;Lim, Kee-Joe
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.2
    • /
    • pp.48-54
    • /
    • 2003
  • To evaluate the radiation degradation of ethylene propylene rubber (EPR), radiation effects on EPR were investigated by using dielectric analysis and thermal-gravimetric analysis. Permittivity, loss factor, tan$\delta$, and thermal decomposition temperature were observed for ${\gamma}$-ray irradiated EPR. As the radiation dose was increased, the peak temperature of the loss factor and tans of EPR were increased and loss factor and tan$\delta$ at peak temperature were decreased. Activation energies were calculated using loss factor and thermal decomposition for ${\gamma}$-ray irradiated EPR as well. The trends of both calculated activation energies showed the same tendencies as radiation dose was increased.

Thermal Properties of Diglycidyl Ether of Terephthalylidene-bis-(4-amino-3-methylphenol) (Diglycidyl ether of terephthalylidene-bis-(4-amino-3-methylphenol)의 열적 성질에 대한 연구)

  • Hyun, Ha-Neul;Choi, Ji-Woo;Cho, Seung-Hyun
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.53-60
    • /
    • 2022
  • This study uses Diglycidyl ether of terephthalylidene-bis-(4-amino-3-methylphenol) (DGETAM), an amine hardener 4,4'-diaminodiphenylethane (DDE) and cationic catalyst N-benzylpyrazinium hexafluoroantimonate (BPH) to make epoxy film. For analysis, 1H_NMR and FT-IR were used to verify proper synthesis, and the liquid crystallinity of DGETAM was checked using Differntial Scanning Calorimetry and Polarized Optical Microscopy. Thermal conductivity of the sample was measured using Laser Flash Apparatus. Thermal stability as well as thermal conductivity is important when used as a packaging material. Activated energy is the energy needed to generate a response, which can be used to estimate the energy required to maintain physical properties. It was obtained using the Arrhenius equation based on the data measured by isothermal decomposition using Thermogravimetric Analysis. Measurement of the thermal conductivity of epoxy films showed higher thermal conductivity when DDE was used, and it was found that thermal conductivity had an effect on thermal stability, given that it represented an activation energy similar to a film with BPH upon 5% decomposition.