• Title/Summary/Keyword: activated sludge system

Search Result 238, Processing Time 0.029 seconds

RESEARCH PAPERS : THE KINETICS ON THE BIOLOGICAL REACTION IN MEMBRANE BIOREACTOR (MBR) WITH GRAVITATIONAL AND TRANSVERSAL FILTRATION

  • Jang, Nam-J.;Hwang, Moon-H.;Yeo, Young-H.;Shim, Wang-G.;S. Vigneswaran;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.9 no.5
    • /
    • pp.238-247
    • /
    • 2004
  • The objective of this study was to develop kinetic model for the MBR and investigate kinetic characteristics of the gravitational flow transverse direction MBR system. Kinetic model was derived by mass balance of substratc and biomass combined with empirical membranc filtration rerm for the MBR. To find kinctic values, permeale flux and COD removal were analyzed through the laboratory, MBR operation as different solids retention times. Permeate flux was ranged 2.5-5.0 LMH (L/m$^2$/hr) as sludge characteristics in each run. Although the soluble COD in the bioreactor was changed, the effluent COD was stable as average 99% removal rate during the experimental periods. Y$_g$ of this MBR system was higher than those of cross-flow MBR processes. The kinetics of this MBR showed that smaller k, larger b, and larger K$_s$ values than the conventional activated sludge process. These results indicated that substrate was used for cell maintenance rather than growth in this MBR system.

Effects of Sewage Treatment on Characteristics of Sludge as a Composting Material (하수처리가 퇴비화를 위한 하수 슬러지 특성에 미치는 영향)

  • Kim, Jae-Koo;Kim, Jong-Soo
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.181-186
    • /
    • 1998
  • The effects of sewage treatment on characteristics of sludge as a composting material were investigated for a year during the initial operation at the full-scale Chunan sewage treatment plant. Due to the shortage of design capacity of belt press, a sludge dewatering unit, non-volatile solids were recirculating and concentrating in the treatment plant, resulting in an increase of MLSS and a decrease in F/M ratio at the activated sludge system. Special attention is required for long term operations since the increase of non-volatile solids in the plant would deteriorates the treatment efficiency. The sewage sludge of the Chunan sewage treatment plant showed 79.5% of water content, 11.6% of organic content, and C/N ratio of 6.1, and contained As 1.8 mg/kg, Cd 27 mg/kg, Hg <0.1 mg/kg, Pb 54 mg/kg, T-Cr 370 mg/kg, and Cu 1,100mg/kg of heavy metals. In order to be used as raw material for optimum composting, the sewage sludge requires bulking agents for moistrure/porosity control and a carbon source for adjusting C/N ratio. However, the sewage sludge is not adequate as a soil conditioner after composing due to a high content of heavy metals. If the sewage sludge has to he used as a soil conditioner after composting, it as required to identify and remove tire industrial wastewater portions in tire influent of the plant since heavy metals in the influent were mostly concentrated in dewatered sludge.

  • PDF

A Study on the BOD Removal Characteristics of Aerobic Submerged Biofilter (Media를 충전(充塡)한 간접폭기식(間接曝氣式) 침지여상(浸漬濾床)에 의한 BOD제거 특성에 관한 연구)

  • Yang, Sang Hyun;Kwon, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.669-678
    • /
    • 1994
  • The BOD removal characteristics of submerged biofilters filled with three kinds of filter media respectively were experimentally examined with constant temperature, pH value and variable BOD loading and recirculation ratio. Obtained results are as follows; 1. The BOD removal ratio decreases with the increasing $BOD_5$ volumetric loading rate, and the loading rate for the BOD removal over 90% is lower thean $1.6kg{\cdot}BOD_5/m^3{\cdot}d$ for the plastic media of Netring and cubic wire meshes. This is a much large value than $0.3{\sim}0.8kg{\cdot}BOD_5/m^3{\cdot}d$ for conventional activated sludge process. The required submerged biofilter volume is found to be much samller than that of conventional activated sludge process. 2. The decreasing order of BOD removal is Netring (random plastic media), cubic wire meshes (plastic module), and then gravel (stone media). This is mainly due to the media characteristics such as void ratio, specific surface area and media shapes. 3. The $BOD_5$ removal rate increases with the recircuration ration, but the rate of increases becomes samaller as the recirculation ratio increases over 20. When $BOD_5$ loading is $1.8kg{\cdot}BOD_5/m^3{\cdot}d$, the required recirculation rationto obtain 90% $BOD_5$ removal is about 20 for Netring and it was about 30 for cubic wire meshes. 4. Reynold's Number increases with recirculation ratio, and the Reynold's Numbers corresponding to the recircuration ratio of 10~50 are less than 52, showing laminar up flows in the filter. The settled and effluent sludges increase with increase of Reynol's Number, and there are the definite Reynold's Numbers at which the settling sludge concentrations become nearly constant respectively in each filters. 5. In this submerged biofilter system, small volume of sludge hopper can be substituted for a separated settling tank.

  • PDF

Study on Local Wireless Network Data Structure for Sludge Multimeter (슬러지 멀티미터를 위한 근거리무선네트워크 데이터구조 설계 연구)

  • Jung, Soonho;Kim, Younggi;Lee, Sijin;Lee, Sunghwa;Park, Taejun;Byun, Doogyoon;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.96-100
    • /
    • 2014
  • Recently, the management system of wastewater treatment facility has magnified due to the stringent regulations for the protection of the environment, and a sewage treatment plant efficiency and research of the car development are activated in large facilities or industrial park. however, the existing sewerage disposal system and specific water quality monitoring network reliability for real-time transmission of this building is insufficient. In this paper, we proposed a local wireless network design for sludge multi meter data collection and control for measuring the concentration of the sludge efficiently. Also, the collected data over the local wireless network to transmitted to the central monitoring system and accumulate the data in real time to calculate statistics is possible to monitor the status of the sewage treatment facilities. The proposed system uses a short-range wireless networks of IEEE 802.15.4 and configures an IEEE 802.11 network which can monitor real-time status in central system. Also, we install a sludge multimeter and communication network in sewage treatment facilities and confirm the usefulness of the proposed technique by demonstrating its effectiveness.

Sewage disposal system management policy in Korea (우리나라의 하수도사업현황 및 시책방향)

  • 류지영
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 1995
  • We had passed through a serious water pollution with a rapid urbanization and industrialization in the 1960's. Seoul Chunggyechun Sewage Disposal System set uP in 1966 and finished in 1976, as the first sewage disposal system in Korea, had covered only 4 percentage of the sewage disposal system per capita for 10 years. Through holding the Asian Games in 1986 and the Olympic Games in 1988, we expanded the sewage disposal system so that it became increased 18 percentage of the population in 1986. Finally, we have installed about 60 sewage disposal system by 1994 for a large environmental investment which was critically caused by "Phenol Accident in Nakdong River" . Now, the sewage disposal system per capita covers 42 percentage and the activity for water quality improvement is going on rapidly. The method of sewage disposal is mainly "activated sludge process" . However, the technical ability for the sewage disposal has largely developed since 1991 so the "extended aeration process" is used in Po$\v{u}$n, Tangyang, Mun$\v{u}$i, "rotating biological contact process" in Onch$\v{u}$ng, Pukok, and "oxidation ditch process" in K$\v{o}$ch'ana.

  • PDF

Photo-Fenton Oxidation Treatment of Pilot Scale for the Decomposition of 1,4-dioxane Generated in a Polyester Manufacturing Process (폴리에스테르 중합 공정에서 발생되는 1,4-dioxane의 분해를 위한 파일럿 규모의 광펜톤산화처리)

  • So, Myung-Ho;Han, Ji-Sun;Han, Thi-Hiep;Seo, Jang-Won;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • In this research, a polyester manufacturing company (i.e. K Co.) in Gumi, South Korea was investigated regarding the release of high concentrations of 1,4-dioxane(about 600 mg/L) and whether treatment prior to release should occur to meet with the level of the regulation standard (e.g., 5 mg/L in 2011). The pilot-scale (reactor volume, 10 $m^3$) treatment system using Photo-Fenton Oxidation was able to remove approximately 90% of 1,4-dioxane under the conditions that concentrations of 2,800 ppm $H_2O_2$ and 1,400 ppm $FeSO_4$ were maintained along with 10 UV-C lamps (240 ${\mu}W/cm^2$) illuminated during aeration. However, the effluent concentration of 1,4-dioxane was still high at about 60 mg/L. Thus, further investigation is needed to see whether the bench scale (reactor volume, 8.9 L) of activated sludge could facilitate the decomposition of 1,4-dioxane. As a result, 1,4-dioxane in the effluent has been decreased as low as about 2~3 mg/L. Consequently, Photo-Fenton Oxidation coupled with activated sludge process can make it possible to efficiently decompose 1,4-dioxane to keep up with that of the regulation standard.

Metabolic Responses of Activated Sludge to Pentachlorophenol in a SBR System (SBR 처리 장치에서 활성 슬럿지의 대사에 미치는 Pentachlorophenol의 독성 효과)

  • KIM Sung-Jae;Benefield Larry D.
    • Journal of Aquaculture
    • /
    • v.6 no.4
    • /
    • pp.323-338
    • /
    • 1993
  • The primary objective of this study was to examine the toxic effects of PCP on activated sludge and to analyze its metabolic responses while treating wastewater containing pentachlorophenol (PCP) in a sequencing batch reactor (SBR) system operating under different control strategies. This study was conducted in two phases 1 and 2 (8-hr and 12-hr cycles). Each phase was operated with two control strategies I and II. Strategy I (reactor 1) involved rapid addition (5 minutes to complete) of substrate to the reactor with continuous mixing but no aeration for 2 hours. Strategy II (reactor 2) involved adding the feed continuously during the first 2 hours of the cycle when the system was mixed but not aerated. During both phases each reactor was operated at a sludge age of 15 days. The synthetic wastewater was used as a feed. The COD of the feed solution was about 380 mg/L. After the reference response for both reactors was established, the steady state response of each system was established for PCP feed concentrations of 0.1 mg/L, 1.0 mg/L, and 5.0 mg/L in SBR systems operating on both 8-hr and 12-hr cycles. Soluble COD removal was not inhibited at any feed PCP concentrations used. At 5.0 mg/L feed PCP concentration and in SBR systems operating on phase 2, the concentrations or ML VSS were decreased; selective pressure on the mixed biomass might be increased, narrowing the range of possible ecological responses; the settleability of activated sludge was poor; the SOURs were increased, showing that the systems were shocked. Nitrification was made to some extent at all concentrations of feed PCP in SBR systems operating on phase 2 whereas in SBR systems operating on phase 1 little nitrification was observed. Then, nitrification will be delayed as much as soluble COD removal is retarded due to PCP inhibition effects. Enhanced biological phosphorus removal occurring in the system operating with control strategy I during phase 1 of this work and in the presence of low concentrations of PCP was unreliable and might cease at anytime, whereas enhanced biological phosphorus removal occurring in the system operating with either control strategy I or II during phase 2 of this work and in the presence of feed PCP concentrations up to 1.0 mg/L was reliable. When, however, such processes were exposed to 5.0 mg/L PCP dose, enhanced phosphorus removal ceased and never returned.

  • PDF

Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant (에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안)

  • Song, Minsu;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.

Removal Behavior of Biological Nitrogen and Phosphorus and Prediction of Microbial Community Composition with Its Function, in an Anaerobic-Anoxic System form Weak Sewage

  • LEE, JIN WOO;EUI SO CHOI;KYUNG IK GIL;HAN WOONG LEE;SANG HYON LEE;SOO YOOUN LEE;YONG KEUN PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.994-1001
    • /
    • 2001
  • An easier way of understanding the BNR system was proposed from the study on substrate, nutrient removal tendency, microbial community and its metabolic function by applying the municipal settled sewage. During the anaerobic period, the phosphorus release rate per VFACOD we varied depending on the phosphorus content in the sludge. When the phosphorus content in the sludge was $6\%$ VSS, according to influent VFACOD, the phosphorus release rate and PHA production were $0.35 gPO_4P/gVFACOD$ and 1.0 gPHA/gVFACOD, respectively. The $NO_3N$ requirement for the phosphorus uptake as an electron acceptor was about $0.5 gNO_3N/gPO_4P_{uptake}$ based on the proposed equation with PHA, biomass, production, and the concentration of phosphorus release/uptake. Bacterial-community analysis of the sludge, as determined by FISH and 16SrDNA characterization FISH, revealed that the beta-subclass proteobacteria were the most abundant group ($27.9\%$ of the proteobacteria-specific probe EUB338), and it was likely that representative of the beta-subclass played key roles in activated sludge. The next dominant group found was the gamma-protebacteria ($15.4\%$ of probe EUB338). 16S rDNA clone library analysis showed that the members of${\beta}$- and ${\gamma}$-proteobacteria were also the most abundant groups, and $21.5\%$ (PN2 and PN4) and $15.4\%$ (PN1 and PN5) of total clones were the genera of denitrifying bacteria and PAO, respectively. Prediction of the microbial community composition was made with phosphorus content (Pv, $\%$ P/VSS) in wasted sludge and profiles of COD, PHA, $PO_4P,\;and\;NO_3N$ in an anaerobic-anoxic SBR unit. Generally, the predicted microbial composition based upon metabolic function, i.e., as measured by stoichiometry, is fairly similar to that measure by the unculturable dependent method. In this study, a proposal was made on he microbial community composition that was more easily approached to analyze the reactor behavior.

  • PDF

Bacterial Degradation of Monoethanolamine (생물학적 방법에 의한 Monoethanolamine의 분해 연구)

  • Hyun, Jun-Taek;Rhee, In-Hyoung;Kwon, Sung-Hyun;Kim, Dong-Jin;Cho, Dae-Chul
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.157-161
    • /
    • 2007
  • This study is to investigate the biological degradation and the characteristics of MEA, a pH regulator to be put in the cooling water circulation system for power plants, loading to elevate concentrations of COD and N when eluted into the water environment. MEA, $NH_4^+$ and CODcr were monitored in flask cultures and in a batch aerator. MEA was found to be biologically degradable, producing substantial amount of ammonia (max. 78.1%) in a form of $NH_4^+$ and other carboneous intermediates. The degradation reaction rates were similar one another over all MEA concentrations tested as the activated sludge (microbial consortium) was acclimated to MEA with the gradual and stepwise increase in MEA input into the batch aerator. Also, MLVSS kept increasing with increasing MEA input. The COD-based degradation reaction order was determined to be 1.