• Title/Summary/Keyword: activated sludge system

Search Result 238, Processing Time 0.027 seconds

A study on the Simultaneous Removal of Nitrogen and Phosphorus on Reactor Configuration in Intermittently Aerated Activated Sludge System (간헐폭기 활성슬러지 시스템에서 반응조 형태에 따른 질소 및 인의 동시제거 특성에 관한 연구)

  • Lee, Won-Ho;Seo, In-Seok;Kim, Kwang-Yul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.106-114
    • /
    • 1998
  • In this research, single-, two- and four-stage intermittently aerated activated sludge system were investigated for simultaneous removal of nitrogen and phosphorus with swine wastewater. For the comparison of removal efficiency, conventional activated sludge system was operated. Operational conditions of intermittently aerated activated sludge system were SRT 20day, HRT 24hr and aeration/nonaeration time 1hr/1hr, respectively. Nitrogen and phosphorus removal efficiency in Intermittently aerated activated sludge system was upgraded compare with conventional activated sludge system. In single-stage intermittently aerated activated sludge system, release-uptake of $PO_4^{3-}-P$ was observed very well but, phosphosrus removal in effluent was not effective. In single-stage intermittently aerated activated sludge system, release-uptake of $PO_4^{3-}-P$ in first reactor, was observed very well but, in following reactor, $PO_4^{3-}-P$ concentation showed almost no change. T-N removal efficiency in conventional activated sludge system, single-, two-, and four-stage intermittently aerated activated sludge system were 48, 87, 90.9 and 95.5%, respectively, and phosphorus removal efficiency were 48, 75, 97 and 95%, respectively. Intermittently aerated activated sludge system as a alternative processes of conventional system leads to meet satisfactory effleunt with only on/off aeration regulation and save energy for aeration.

  • PDF

A Study on the improvement of treatment efficiency in a conventional sewage treatment plant (기존 하수처리장에서의 처리 효율개선에 관한 연구)

  • 안철우;박진식;문추연
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.50-56
    • /
    • 2000
  • In this study, sewage were treated with operating Two-step Aeration System and conventional activated sludge process together in a condition. At the same HRT 8hr of Two-step Aeration System and Activated Sludge Process, BOD treatment efficiency of 1st sedimentation basin effluent 36.9% by Two-step Aeration system was 12.3% higher than 24.65 by Activated Sludge Process and the COD treatment efficiency 39.8% by two-step Aeration System was 11.6.3% higher than 28.2% by Activated Sludge Process. BOD and COD treatment efficiencies of 2nd sedimentation basin effluent were 88.1% and 85.6% Two-step Aeration System and were 83.8% and 82.3% Activated Sludge Process. In the first treatment, as BOD was relatively removed a lot, F/M ratio 0.17, $0.21{\cdot}BOD/kg{\cdot}MLSS.d$ was maintained by Activated Sludge Process. Therefore it was proved that organic matter treatment efficiency by Two-step Aeration System os Higher than by Activated Sludge Process in a aeration time 8hr. $NH_4^{+}-N$ treatment efficiencies were 55.5% by Two-step Aeration System and 39.75 by Activated sludge Process. $NO_3^{-}-N$ concentration in 2nd. sedimentation basin effluent were 3.33% by Two-step Aeration System and 2.36% by Activated Sludge Process. From this result, Two-step Aeration System was proved more advantageous treatment process for nitrification than Activated Sludge Process. The fluctuation range of BOD, COD and SS concentration in 2nd sedimentation basin effluent $16~33mg/{\ell}$, $15~23mg/{\ell}$ and $14~22mg/{\ell}$ by Two-step Aeration System was smaller than $16~57mg/{\ell}$, $15~25mg/{\ell}$ by Activated sludge Process. Overall the fluctuation range in 2nd sediment basin effluent by was smaller than by Activated Sludge Process. As a result, it is possible for this Two-step Aeration with no facility investment and a little of operation condition change in a conventional sewage treatment plant to get stability and nitrification of treatment water quality.

  • PDF

Influence of Anoxic Selectors on Heavy Metal Removal by Activated Sludge

  • Niec, Jay H.;Cha, Daniel K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.431-435
    • /
    • 2000
  • The goal of this research is to compare the metal binding characteristics of an anoxic selector activated sludge system and a conventional activated sludge system. Metal biosorption by biomass harvested from experimental systems was determined by a series of batch experiments. Heavy metals studied in this research were zinc, cadmium, and nickel. The sorption isotherm showed that the selector sludge had significantly higher sorption capacity than did the control sludge. Metal biosorption behavior closely followed a Freundlich isotherm model for equilibrium concentrations. ECP contents of biomass estimated by alkali extraction technique showed that ECP levels in the selector sludge significantly higher than that in the sludge harvested from the conventional system, indicating that the higher metal sorption capacity of selector sludge may be due to the selection of the ECP-producing bacteria (i.e., Zoogloea sp.) by the selector system.

  • PDF

Simulations of a System Dynamics Model for Operations and Maintenance of Activated-Sludge Wastewater Treatment Plants (활성슬러지 하수처리시설 운영 및 유지관리를 위한 시스템다이내믹스 모델의 모의에 관한 연구)

  • Park, Suwan;Kim, Bong Jae;Jun, Hwan Don;Kim, In Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.905-912
    • /
    • 2006
  • In this paper, simulation methods of the system dynamics model developed by Das et al. (1997) for activated-sludge wastewater treatment plants are illustrated in an attempt to determine the operating rules and the policies related to capacity expansion of an activated-sludge wastewater treatment plant. For existing conditions, the analyses were performed by varying activated-sludge return rate to observe changes in effluent water quality and treatment efficiency. The effluent water quality is also analyzed for various average daily inflow conditions and activated-sludge return rates. As a result, without expanding the aeration tank, maximum average daily inflow that can satisfy the effluent water quality standard of BOD $0.02kg/m^3$ was determined as $2,840m^3/hr$, subject to 100% of activated-sludge return rate while other factors remain constant. When the activated-sludge return rate is less than 100%, expansion of the aeration tank is necessary and minimum sizes of the aeration tank to satisfy the effluent water quality standard were determined for various activated-sludge return rates. In addition, the total operating and maintenance as well as unit treatment cost regression equations for activated-sludge wastewater treatment plants are suggested by using the cost data that are obtained from Water and Wastewater Division, Ministry of Environment. The regression analyses showed that the economies of scale phenomena exist in the operating and maintenance costs of activated-sludge wastewater treatment plants.

Hydraulic Shock Load Response of Activated Sludge Process (활성슬러지공정의 수리학적 충격부하 반응)

  • Whang, Gye Dae;Kim, Min Ho;Ko, Sae;Cho, Chul Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.67-78
    • /
    • 1997
  • The objective of study was to examine to transient response of hydraulic shock loading in activated sludge process for treatment of municipal sewage. The general experiment approach was to operate the system under steady-state(pre-shock), then to apply step changes during 24hours in fourfold hydraulic shock loading at the same organic loading. Performance was assessed in both the transient state and the new steady-state(post-shock). Three bench scale activated sludge reactors were operated to investigate the effect of fourfold hydraulic shock loading on TSS and COD removal efficiency. In activated sludge reactors operated with 13hours and 7hours of HRT, effluent quality of all reactors was not changed for few effects, and also showed no foaming and no sludge bulking. Those results are the same as sludge withdrawn reactors. The effect of fourfold hydraulic shock loading on the activated sludge reactors operated with 3hours of HRT was most severe. The effluent quality was deteriorated significantly and generate foaming in reactors. Less than 24hours after the fourfold shock loading applied, the activated sludge system seemed to attain a new steady-state condition as show by effluent.

  • PDF

Enzymatic Activities in Petroleum Wastewater Purification System by an Activated Sludge Process

  • Li Yin;Chrost Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.200-204
    • /
    • 2006
  • The enzymology of an activated sludge system for a petroleum wastewater purification process was investigated. Leucine-aminopeptidase (L-AMP), ${\beta}$-glucosidase (${\beta}-GLC$), and lipase (LIP) were selected for the study. It was found that more than 81.7% of enzymatic activity was associated with microbial cells in the activated sludge floc. The metabolic response of a mixed microbial population to increased phenol concentration showed that L-AMP activity increased in the activated sludge, whereas activities of ${\beta}-GLC$ and LIP decreased, due to the inhibitory effect of the phenol which varied from 100 mg/l to 500 mg/l.

Population Dynamics of Phage-Host System of Microlunatus phosphovorus Indigenous in Activated Sludge

  • Lee, Sang-Hyon;Otawa, Kenichi;Onuki, Motoharu;Satoh, Hiroyasu;Mino, Takashi
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1704-1707
    • /
    • 2007
  • Monitoring of the phage-host system of Microlunatus phosphovorus indigenous in activated sludge was attempted. A laboratory-scale activated sludge process was operated for 5 weeks with synthetic wastewater. The phage-host system population in the process was monitored by plaque assay and FISH methods at every 3 days. During the process operation, the phage-host system populations were more or less steady, except for 1 week in the middle of the operation. In that period, initially M. phosphovorus decreased significantly and its lytic bacteriophages increased, and then M. phosphovorus increased back to its original level while its lytic bacteriophages decreased. This observation suggests that lytic bacteriophages should be considered as one of the biological factors affecting the bacterial population dynamics in activated sludge processes.

An optimization of activated sludge process in wastewater treatment system utilizing fuzzy graphic simulator (퍼지 그래픽 시뮬레이터를 이용한 하수처리 시스템 활성오니공정의 최적화)

  • Nahm, Eui-Suck;Park, Jong-Jin;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.204-213
    • /
    • 1997
  • In this paper, an application of fuzzy-neuron reasoning to the control of an activated sludge plant is presented. The activated sludge process is widely used in modern wastewater treatment plants. The operation control of the activated sludge process, however, is difficult due to the following reasons : 1)The complexity of the wastewater components, 2)the change of the wastewater influent, and 3)the adjustment errors in the control process. Because of these reasons, it is difficult to obtain mathematical model that really reflect the relationship between the variables and parameters in the process of wastewater treatment correctively and effectively. In this paper, the activated sludge process(A.S.P.) is modeled by a new fuzzy-neuron network representing nonlinear characteristics. These fuzzy-neurons have fuzzy rules with complementary membership function. Based on the constructed model, graphic simulator on X-window system as a graphic integrated environment is implemented. The efficacy of the proposed control scheme was evaluated and demonstrated by means of the field test.

  • PDF

Studies on the Wastewater of General Hospital and It에s Treatment -Effects of Disinfectants on Activated Sludge Process- (病院廢水의 特性과 處理에 關한 硏究 -消毒劑가 활성스러지법에 미치는 영향-)

  • Ra, Kyu Hwan;Ok, Chi Sang
    • Journal of Environmental Health Sciences
    • /
    • v.10 no.1
    • /
    • pp.13-20
    • /
    • 1984
  • The hospital wastewaters have to be so disposed as to prevent disease and to protect water resources from hazardous substances disinfectants, medicines, and chemicals. Polyvinylpyrrolidone-iodine complex (povidone-iodine) is widely used in the hospital as one of disinfectants. This study was carried out to manifest the effect of disinfectants in growth of activated sludge in treatment of the hospital wastewater by the activated sludge process. The results are as follow. 1. An average water quality of the hospital wastewater showed 7.2 in pH, 3.2 ppm in DO, 293.3 ppm in SS, 96.0 ppm in BOD, 151.1 ppm in COD, 0.4 ppm in povidone-iodine, 0.5 ppm in phenols, 5.4 ppm in surfactants, 1.6 ppm in o-phosphate, 4.6 ppm in $NH_3-N, 249\times 10^4$ counts/100 ml in coliform group organisms, and $1,369\times 10^2$ counts/ml in general counts of bacteria. And wastewater amounts discharged per bed was calculated 70 l/d/bed. 2. In batch culture activated sludge process, each of cresol and povidone-iodine was not effected in less than 0.1 ppm concentration, but the more concentration, the more inhibit the growth rate of activated sludge. In the mixture of two disinfectants, the growth was more inhibited the effect of single disinfectants. So that this reaction is considered as addition effect of two disinfectants. 3. The removal rates of the disinfectants-by continuous culture activated sludge process were 77.6% in 0.4 ppm povidone-iodine, and in BOD was 85.6%. 4. It is desirable that the hospital wastewater is planed in order to be discharged to two system separately, sewer from life system and wastewater from medical system. From those results, it has been concluded that the hospital wastewater has to be treated safely by the activated sludge process.

  • PDF

A Study on the Field Application of Intermittently Aerated Activated Sludge Process for Water Reuse System (간헐포기 활성슬러지 중수처리공정의 현장적용 연구)

  • Seo, In-Seok;Kim, Byung-Goon;Park, Seung-Kook;Kwon, Sun-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.513-521
    • /
    • 2000
  • Intermittently aerated activated sludge process was applied as a water reuse process of $70m^3/day$ for the upgrade of organic, nitrogen and phosphorus removal efficiency and clarifier performance. After application of the intermittently aeration, removal efficiency of BOD, SS, T-N and T-P were achieved 95%, 90%, 80% and 60%, respectively. Removal efficiencies in intermittently aerated process were considerably increased. comparing to those of continuously aerated activated sludge process. Also sludge rising problem in clarifier was improved. Average concentration of supplied reusing water were BOD 5 mg/L, turbidity 4 NTU and after chlorination, residual chlorine 0.4 mg/L, coliform 0 MPN/100mL. Intermittently aerated activated sludge process could be one of the best alternative process for the retrofit of conventional activated sludge process for the removal of nutrient in water reuse system.

  • PDF