• Title/Summary/Keyword: activated Hwangtoh

Search Result 19, Processing Time 0.026 seconds

Experimental Study on the Resistance of Chloride Infiltration of Concrete Using Activated Hwangtoh Admixture (활성황토를 사용한 콘크리트의 염소이온 침투 저항성에 관한 실험적 연구)

  • 이강우;장종호;최희용;구자술;황혜주;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.781-786
    • /
    • 2001
  • The Salt attack is one of the primary factors that cause the deterioration of durability in steel reinforced concrete structure. And to depreciate the deterioration from the Salt attack in concrete structure, pozzolanic materials are used widely in recent years. In this study, experiments about the resistance of chloride infiltration of concrete according to the replacement rations of Activated Hwangtoh and various pozzolanic materials(silica fume, fly ash, blast furnace slag and non Activated/Activated Hwangtoh) are performed and the results of this study were shown as follows; 1) As the replacement ratios of Activated Hwangtoh were getting higher, the strength of concrete was increased and in case of various pozzolanic materials, strength of Activated Hwangtoh in specimen was better than that of fly ash, blast furnace slag and non Activated Hwangtoh. 2) As the replacement ratios of Activated Hwangtoh were getting higher, the resistance of chloride infiltration of concrete was increased and in case of various pozzolanic materials, silica fume is better than any other pozzolanic materials and Activated Hwangtoh was better than that of fly ash, blast furnace slag and non Activated Hwangtoh.

  • PDF

Bond Strength of Mortar mixed Activated Hwangtoh

  • Go, Seong-Seok;Yeo, Sang-Ku;Lee, Hyun-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.468-477
    • /
    • 2012
  • This study aimed to mix and test mortar incorporating activated Hwangtoh to improve the Hwangtoh brick bond strength of brick structures. To do this, the bond strength correlation of mortar was analyzed by means of materials and experiment factors and levels, and the optimum conditions were suggested after analyzing the physical properties of brick and the mix ratio of mortar and additive. Furthermore, the compressive strength and bond strength were found to be in inverse proportion, and in terms of the materials and mixing level, W/C ratio, substitution ratio of activated Hwangtoh, and fine aggregate grading were shown to have a considerable influence on the strength. In conclusion, the optimum mixing conditions to improve the bond strength are found to set W/C ratio at 65% and replacmenet ratio of activated Hwangtoh at 10%.

Shear and Bond Strength of Activated Hwangtoh Concrete Beam (활성 황토 콘크리트 보의 전단 및 부착 강도)

  • Lee, Nam-Kon;Park, Hong-Gun;Hwang, Hye-Zoo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.685-694
    • /
    • 2010
  • As a eco-friendly material, Hwangtoh (red clay) has been studied for complete or partial replacement of portland cement. Most of existing studies focused on the material properties of the Hwangtoh concrete including the compressive strength, drying shringkage, and creep. In the present study, the shear strength of the beams made with the Hwangtoh concrete was tested. Further, bond strength of tension re-bars embedded in the Hwangtoh concrete was tested. One of the concrete tested consisted of activated Hwangtoh replacing 20% of the cement. The other consisted 100% activated. Hwangtoh replacing all the cement. The beam specimens were tested under two point static loading. The test result showed that the shear strength of activated Hwangtoh concrete beams replacing 20% and 100% of cement was equivalent to that of the ordinary portland cement concrete beam. However, the bond strength of activated Hwangtoh concrete replacing 100% of the cement was less than that of the ordinary portland cement concrete.

Flexural Performance of Activated Hwangtoh Concrete Beam (활성 황토 콘크리트 보의 휨 성능)

  • Lee, Nam-Kon;Hwang, Hye-Zoo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.567-574
    • /
    • 2010
  • As a eco-friendly material, Hwangtoh(red clay) has been studied for a partial or complete replacement of portland cement. Most of existing studies focused on the mechanical properties of the Hwangtoh concrete including the compressive strength, drying shrinkage, creep. In the present study, the flexural capacity of the beams made with the Hwangtoh concrete was tested. One of the concrete tested consisted of activated Hwangtoh replacing 20% of the cement. The other consisted 100% activated Hwangtoh replacing all the cement. The simple beams were tested under two point static loading. The flexural strength, cracking moment, deflection, and ductility were compared with those of the beams made with ordinary portland cement concrete.

Characteristics of Alkali-activated Natural Hwangtoh Paste Utilizing Microwave Heating

  • Kim, Baek-Joong;Yi, Chong-Ku;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.503-509
    • /
    • 2012
  • In this study, the potential use of indigenous natural loess(Hwangtoh) as a new construction material, via alkali activation in conjunction with microwave heating, was investigated. Hwangtoh pastes with three different mix proportions of varying alkali liquid concentrations at a constant liquid-to-Hwangtoh ratio of 0.55 were prepared. Through the investigation it was found that it is possible to prepare Hwangtoh paste with $19.02N/mm^2$ at the age of 4 hours with the alkali solution of 8M NaOH and 1:4.5 mass ratio of liquefied $Na_2SiO_3$ at the curing temperature of $60^{\circ}C$ by microwave heating. The strength development at early age of the alkali activated Hwangtoh paste specimens may be attributed to both a higher rate of reaction and moisture evaporation due to microwave heating.

A Study on the Reactivity of Non-activated Hwangtoh added Reaction Induction Material (반응유도재를 첨가한 비활성황토의 반응성에 관한 연구)

  • Cho, Hyeok-Hwan;Go, Seong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.165-170
    • /
    • 2009
  • Since artificial building materials and environmental contamination are getting worse recently, people has been interested in eco-friendly construction. In addition, the problems like Sick Building Syndrome are issued these days. In order to solve these problems, the reuse of building materials and the development of environment-friendly materials are urgently in demand. In this sense, Hwangtoh is in the limelight as the environment-friendly material, and broad studies on it have been in progress. However the reactivity of Hwangtoh is low, and without activation process it is very hard to use it as a building material. This study examined the usability of Hwangtoh as an environmental building material by experimenting the reactivity of inactivated Hwangtoh with Reaction Induction Material.

  • PDF

Physical Properties of Environment-friendly Insulating Composite Materials Using Natural Cellulose as a Core Material (천연섬유질을 심재로 사용한 친환경 복합단열재의 물성)

  • Hwang, Eui-Hwan;Cho, Soung-Jun;Kim, Jin-Man
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.120-127
    • /
    • 2011
  • For the development of the environment-friendly insulating composite materials, natural cellulose (wood chip and sawdust) was used as a core material and activated Hwangtoh was used as a binder. Various specimens were prepared with the water/binder ratio and natural cellulose/binder ratio. The physical properties of these specimens were then investigated through compressive and flexural strength test, absorption test, hot water resistance test, thermal conductivity, measurement of pore distribution and observation of micro-structures using scanning electron microscope (SEM). Results showed that the absorption ratio increased with the increase of natural cellulose/binder ratio but decreased remarkably with the increase of polymer/binder ratio. The compressive and flexural strength development varied appreciably with the increase of water/binder ratio and natural cellulose/binder ratio. On the other hand, thermal conductivity decreased with the increase of natural cellulose/binder ratio and polymer/binder ratio. Through SEM, it was found that activated Hwangtoh that reacted with water formed a hydrate crystal leading to the compact structure and the total pore volume of the specimen using activated Hwangtoh was smaller than that of the non-activated Hwangtoh.

An Experimental Study on the Bond Characteristic of GFRP Bars in PVA Fiber Reinforced Activated Hwangtoh Concrete (PVA 섬유보강 황토 콘크리트에 대한 GFRP 보강근의 부착성능에 관한 실험적 연구)

  • Park, Mi-Rae;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.134-141
    • /
    • 2017
  • Many studies have been conducted with respect to the materials to replace the cement in order to reduce the carbon dioxide emissions during the cement production. Activated hwangtoh as cement replacement material goes through calcination process of $850^{\circ}C$. PVA fibers and GFRP bars are used in order to compensate for the cracks of activated hwangtoh concrete(AHC). This paper presents an experimental study investigating the bond characteristic of GFRP bars in PVA fiber reinforced AHC under tensile loads. Experimental results showed that average bond strength factor of specimens with and without PVA fiber was 2.27~2.48 and was not significantly affected by the ratio of PVA fiber andactivated hwangtoh. In addition, as the bond length was increased, the bond strength was reduced.

Experimental Study on the Properties of Concrete by the Kinds of Admixture and the Replacement Ratios of Activated Hwangtoh (혼화재 종류 및 활성황토 대체율별 콘크리트의 공학적 특성에 관한 실험적 연구)

  • 최희용;김무한;김문한;황혜주;최성우
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • Pozzolan is to improve the strength and the durability of concrete as a result of the pozzolanic reaction, Broadly speaking, pozzolanic materials can be artificial materials, such as slica fume and fly ash, and natural material, such as rice husk ash, clay, volcanic ash, clayish pozzolan. Hwangtoh is a mineral which belongs to a group of matakaolin, especially halloysite, and the main elements is SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$. The purpose of this study is to examine the application of Hwangtoh for the concrete admixtures, the composition of this study is shown as follows. Chapter I is analysis for properties of concrete as the kinds of admixture, and Chapter H is analysis for properties of concrete as the replacement ratio of activated Hwangtoh. As a result of this study, Hwangtoh is found to have high practical use as pozzolanic material, and the pertinent range of replacement ratios of Hwangtoh on cement are 10∼20 %.

Durability and mechanical performance in activated hwangtoh-based composite for NOx reduction

  • Kim, Hyeok-Jung;Park, Jang-Hyun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.307-314
    • /
    • 2021
  • Activated hwangtoh (ACT) is a natural resource abundant in South Korea, approximately 15.0% of soil. It is an efficient mineral admixture that has activated pozzolanic properties through high-temperature heating and rapid cooling. The purpose of this study is to improve a curb mixture that can reduce NOx outside and investigate durability performance. To this end, mortar curb specimens were manufactured by replacing OPC with ACT. The ACT substitution ratios of 0.0, 10.0, and 25.0% were considered, and mechanical and durability tests on the curb specimens were conducted at 28 and 91 days of age. Steam curing was carried out for three days for the production of curbs, which was very effective to strength development at early ages. The reduction in strength at early ages could be compensated through this process, and no significant performance degradation was evaluated in the tests on chloride attack, carbonation, and freezing and thawing. The mortar curb with an ACT of 10.0~25.0% replacement ratio exhibited clear NOx reduction through photocatalytic (TiO2) treatment. This is due to the increase in physical absorption through surface absorption and the photocatalyst-containing TiO2 coating. In this study, the reasonable range of the ACT replacement ratio for NOx reduction was quantitatively evaluated through a comprehensive analysis of each test.