• 제목/요약/키워드: activated

검색결과 11,488건 처리시간 0.031초

알루미노 실리케이트 겔과 활성탄 혼합물상에서의 제올라이트 합성 (Synthesis of Zeolite from the Mixtures of Aluminosilicate Gel and Activated Carbon)

  • 박중환;서정권;정순용;이정민;도명기
    • 공업화학
    • /
    • 제9권5호
    • /
    • pp.615-618
    • /
    • 1998
  • 수성 교질법에 의한 제올라이트 합성 과정에서 활성탄을 부가함으로써 제올라이트 결정화 과정에 미치는 영향과 활성탄 기공 내에서의 제올라이트 결정의 담지현상을 조사하였다. A형 제올라이트를 합성하기 위한 몰 조성비로 조절된 알루미노 실리케이트 겔상에 5 wt % 정도의 활성탄을 첨가할 경우에는 그대로 A형 제올라이트가 생성되었으나 15 wt % 정도 첨가할 경우에는 대부분이 X형이고 일부 A형과 P형 제올라이트가 혼재된 상태로 결정화가 일어났으며, 20 wt %이상 첨가할 경우에는 순수한 X형 제올라이트가 생성되었다. 활성탄의 기공 입구와 내부에는 $1{\mu}m$ 이하의 미세한 제올라이트 결정들이 서로 엉겨붙어 있는 형태로 관찰되었으며, 기공분포 및 입도분포 결과로부터 단순히 제올라이트와 활성탄의 혼합물 형태가 아니라 활성탄 기공 내에 미세한 제올라이트 결정들이 담지되어 있는 복합 소재임을 확인하였다.

  • PDF

구리 촉매 담지 대나무 활성탄의 NO 가스 반응 특성 (Kinetics of NO Reduction with Copper Containing Bamboo Activated Carbon)

  • 박영철;최주홍
    • 대한환경공학회지
    • /
    • 제38권3호
    • /
    • pp.144-149
    • /
    • 2016
  • 대나무를 원료로 탄화 및 활성화 온도 $900^{\circ}C$에서 대나무 활성탄을 만들고, 이 대나무 활성탄에 금속 구리와 금속 은을 담지시켜 금속 담지 대나무 활성탄을 제조하였다. 제조된 금속 담지 활성탄의 비표면적 및 세공분포 등의 물리적 특성을 분석하였다. 또한 폐 대나무 활성탄의 재활용을 위하여 대나무활성탄과 NO 기체의 반응 특성 실험을 열중량분석기를 사용하여 반응 온도 $20{\sim}850^{\circ}C$, NO 농도 0.1~1.8 kPa 변화 조건에서 하였다. 실험 결과, 대나무 활성탄 특성 분석에서 구리 담지 대나무 활성탄에서는 구리 담지량이 증가할수록 세공 부피와 표면적이 감소하였다. 비등온과 등온 NO 반응에서는 전체적으로 구리 담지 대나무 활성탄[BA(Cu)]이 대나무 활성탄[BA]에 비하여 반응속도가 향상되는 것을 볼 수 있었다. 그러나 은 담지 대나무 활성탄[BA(Ag)]은 반응이 억제되는 것을 볼 수 있었다. NO 반응에서의 활성화에너지는 80.5 kJ/mol[BA], 48.5 kJ/mol[BA(Cu)], 66.4 kJ/mol[BA(Ag)]로 나타났고, NO 분압에 대한 반응차수는 0.63[BA], 0.92[BA(Cu)]이었다.

세정 활성탄의 흡착특성 (Adsorption Properties of Demineralized Activated Carbon)

  • 김정열;신창호;서문원;김영호;이근희;지상운
    • 한국연초학회지
    • /
    • 제18권1호
    • /
    • pp.85-91
    • /
    • 1996
  • Commercially available activated carbon was treated with 0.2N NaOH/0.1N HCl to decrease the ash contents and to analyze the effect of demineralization. We have studied their properties and adsorptivity to solvents such as benzene, acetone, toluene and carbon tetrachloride, ammonia and also aldehydes of cigarette smoke. By demineralization with NaOH/HCl, surface area and pore volume were increased up to 10 - 20% according to developement of micro-pore and pH of activated carbon was also changed from 10.2 to 6.3. Surface acidity of the activated carbon treated with chemicals increased slightly. The chemical treatment led to small increase in adsorptioil properties of solvents, ammonia and aldehydes of cigarette smoke, but content of chlorine and sulfur in activated carbon were reduced. As the results of smoking test, charcoal taste caused by the activated carbon was reduced significantly by the treatment with NaOH/HCl.

  • PDF

함침농도와 CO2 가스 유입농도에 따른 활성탄의 흡착특성 (Adsorption Characteristics of Activated Carbons According to Impregnation Concentrations and Inlet CO2 Gas Concentrations)

  • 이동환;감상규;이송우;이민규
    • 한국환경과학회지
    • /
    • 제19권12호
    • /
    • pp.1403-1407
    • /
    • 2010
  • The adsorption characteristics of $CO_2$ gas on impregnated activated carbons with MEA (Mono-ethanolamine) and AMP (2-Amino 2-methyl 1-propanol) were studied to improve the adsorption ability of $CO_2$ gas on activated carbon. The equilibrium adsorption capacity of $CO_2$ gas was increased by increment of impregnation concentration up to 40 %, but decreased above 50 %. The adsorption capacity of activated carbon impregnated with AMP was higher than activated carbon impregnated with MEA. The breakthrough was fast according to increment of inlet concentration of $CO_2$ gas.

활성탄 재생이 자연유기물질의 흡착에 미치는 영향 (Effect of Reactivation of Activated Carbon on Adsorption of Natural Organic Matter)

  • 홍성호;최주솔
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.323-329
    • /
    • 2007
  • There is no certain definition about advanced drinking water treatment but it is generally known as activated carbon process, membrane process or ozone process which can remove non-conventional pollutants such as taste and odor compounds, and micro-pollutants. There are more than 20 processes related to activated carbon as adsorber or biological activated carbon in Korea. The saturated carbon by pollutants can be reused by reactivation. However, the effect of reactivation on activated carbon is not well-understood in terms of changing physical properties of carbon to adsorption capacity of natural organic matter (NOM). In this study, the effects of reactivation on physical properties of activated carbon were investigated by isotherm and breakthrough of NOM. Ash content was increased from 8% to 13.3%. Iodine number is commonly used as an indicator for performance of reactivation. The iodine number was decreased about 20% after reactivating twice. The degree of reactivation can be evaluated by not only iodine number but also apparent density.

Preparation and Characterization of Metal-containing Activated Carbon Derived from Phenolic Resin

  • Oh, Won-Chun
    • Carbon letters
    • /
    • 제4권2호
    • /
    • pp.86-92
    • /
    • 2003
  • A series of micro- and mesoporous activated carbons were prepared from two kinds of phenolic resin using a metal treated chemical activation methodology. $N_2$-adsorption data were used to characterize the surface properties of the produced activated carbons. Results of the surface properties and pore distribution analysis showed that phenolic resin can be successfully converted to micro- and mesoporous activated carbons with specific surface areas higher than 973 $m^2/g$. Activated carbons with porous structure were produced by controlling the amount of metal chlorides ($CuCl_2$). Pore evolvement depends on the amount of additional metal chloride and precursors used. From the SEM and EDX data, copper contents were shown to be most effected by the incremental addition of metal chloride.

  • PDF

플라이애시와 슬래그 혼합 알칼리 활성 시멘트의 미세구조 특성 (Microstructural Characteristics of Alkali-Activated Cements Incorporating Fly Ash and Slag)

  • 장정국
    • 도시과학
    • /
    • 제7권1호
    • /
    • pp.39-43
    • /
    • 2018
  • This study investigates microstructural characteristics of alkali-activated cements incorporating slag and fly ash. Samples were prepared with four fly ash:slag ratios, i.e., 100:0, 90:10, 70:30 and 50:50, and they were synthesized by using an alkali activator. Microstructural characteristics of the alkali-activated cements were determined by XRD, TGA, SEM, N2 gas adsorption/desorption methods, and compressive strength test. The results showed that properties of alkali-activated fly ash/slag were significantly affected by slag contents. Alkali-activated fly ash/slag with slag content of 30-50% showed higher compressive strength than ordinary Portland cement paste. An increase in slag content resulted in a denser microstructure, which composed of amorphous gel, therefore contributed to strength development of the material.

활성탄의 표면 구조 변화에 따른 흡착 특성 연구 (Adsorption properties of surface - modified activated carbon)

  • 김정렬;서문원;신창호;김영호;이근회;지상운
    • 한국연초학회지
    • /
    • 제16권2호
    • /
    • pp.191-197
    • /
    • 1994
  • Relationships between surface structure and adsorption properties of smoke components were investigated in surface-modified and un-modified activated carbon filter cigarettes. Commercially available activated carbon was treated with nitric acid and hydrogen peroxide as oxidant, and their pore volume, surface structure, BET surface area, pore type and size were studied. BET surface area and pore volume were decreased by nitric acid treatment, but median pore diameter was 8.1 $\AA$, which showed better development of pore compared with that of un-modified activated carbon, 6.9 $\AA$. In case of hydrogen peroxide treatment, BET surface area and pore volume were increased. Their pore was found to be a slit type based on V-t plot analysis. Neutralization capacities for bases of different strength (NaHCO3, Na2CO3, NaOEt and NaOH) showed that the majority of the acidic surface groups are of weak acidity. Modification of the activated carbon surface led to a slight change in adsorption properties when analyzing the smoke of triple-filter cigarette with surface-modified activated carbon.

  • PDF

지방족 할로겐화합물의 활성슬러지와 해안저질 및 점토에서의 흡탈착 특성 (Sorption/Desorption Characteristics of Halogenated Aliphatic Compounds from Activated Sludge, Sediment, and Clay)

  • 김종오;박종석;최연돈
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.961-969
    • /
    • 2002
  • This study was performed : 1) to establish the experimental analysis conditions for the sorption and desorption of toxic organic contaminants to/from the activated sludge, sediment, and clay, and 2) to determine the sorption and desorption equilibrium coefficients of some representative halogenated aliphatic compounds. Through the preliminary sorption test using Azo dye, a setting of quantitative experimental conditions to determine the sorption and desorption characteristics was decided as follows; equilibration time of 180 minutes, centrifuge for 15 minutes at 5000$\times$g, and 500mg/$\ell$ of TOC concentration. The sorption and desorption characteristics of halogenated aliphatic compounds onto activated sludge, sediment and clay could be described very well using the Freundlich isotherm. The preference of the average sorption capacity of the overall compounds showed in the sequence sediment 0.26mg/g, clay 0.23mg/g, and activated sludge 0.11 mg/g. The desorption rate of the sorbed compounds onto activated sludge, sediment and clay was approximately 89.8%, 35.3%, and 66.4%, respectively.

Role of Sodium lon in Biodegradation of Nitroaromatic Compound by Activated Sludge and Pure Cultures

  • Jo, Kwan-Hyung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제3권3호
    • /
    • pp.169-175
    • /
    • 1999
  • 2,4-Dinitrophenol(DNP) is a metabolic uncoupler that prevents cells from creating energy for growth and it has been suggested that the availability of sodium ions may be important in mitigating the effects of uncouplers. Accordingly, the degradation of DNP was investigated using activated sludge which had been adapted to mineralize DNP. After the acclimation of the activated sludge, the effect of sodium ions on the toxicity of high concentrations(80 to 100mg/L) of DNP was investigated over a sodium ion concentration range of 9.3$\times$10-5 to 94mM. The concentration of sodium ions in the activated sludge mixed liquor seemed to have little effect on the DNP toxicity. However, a lack of sodium in the grwoth media resulted in a reduction of the DNP degradation rate by a bacterial isolate from the activated sludge culture identified as Nocardia asteroides.

  • PDF