• Title/Summary/Keyword: action properties

Search Result 780, Processing Time 0.036 seconds

Physicochemical Properties, Stabilities and Pharmacokinetics of Cephalosporin 3'-Quinolone Dithiocarbamate (세팔로스포린 3'-퀴놀론의 물리화학적 성질, 안정성 및 체내약물동태)

  • 나성범;공재양;김완주;지웅길
    • YAKHAK HOEJI
    • /
    • v.37 no.6
    • /
    • pp.638-646
    • /
    • 1993
  • A cepfialosporin with an aminothiazoiylmethoxyimino-type side chain at the 7 position and bicyclic quinolone dithicarbamate at the 3' position was synthesized. It has broad and potent antivacterial activity in vitro. The antibacterial spectrum reflects contributions of both the cephalosporin moiety and the quinolone moiety. Thus, this compound was named DACD implying a dualaction cephalosporin derivative. In this paper, the physicochemical proper-ties (lipid-water partition, pKa), stability and pharmacokinetics of DACD were determined and compared with cefotaxime 3'-norfloxacin dithiocarbamate (CENO). Stability tests were studied in pH 1.20, 6.80 and 8.00 buffers and in the presence of AB type human plasma, rat liver homogenate and its .betha.-lactamase. The pharmacokinetic parameters of DACD were evaluated in mice after a single intravenous dose of 40 mg/kg. The results are as follows. The lipid-water partition coefficient of DACD was higher than that of CENO. The calculated pKa values of CENO and DACD, were 6.82$\pm$0.03, 7.53$\pm$0.21, respectively. In the hydrolysis test, half-lives (t$^{1/2}$) of CENO and DACD was 66.0 hr and 80.0 hr in pH 6.80 buffer, 190 hr and 91.4 hr in pH 8.00 buffer. CENO and DACD were rapidly hydrolyzed in human plasma and in rat liver hornogenate. Half-lives (t$_{1/2}$ of CENO and DACD were 1.29 hr and 1.15 hr in hyman plasma, 0.62 hr and 0.71 hr rat liver homogenate. In $\beta$-lactamase stability test, CENO and DACD were very stable to the .betha.-lactamases obtained from three different strains. Half-life (t$_{1/2}$) and areas under the curve (AUC) in mice were 2.33 hr and 15.97 (mg.h/1), respectively.

  • PDF

A Herbalogical Study on the Plants of Pteridaceae in Korea (한국산 고사리과 식물에 관한 본초학적(本草學的)연구)

  • Lee, Sang-Su;Jeong, Jong-Gil;Choi, Chan-Hun;Kim, Chae-Hyun
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.33-40
    • /
    • 2008
  • Objectives : For the purpose of developing Korean herbalogy of the plants belonging to Pteridaceae in Korea, the literatures of the successive generations have been thoroughly investigated to prepare this article. Methods : The examined herbalogical books and research papers which published at home and abroad. Results : 1: There are totaled to 12 genera and 33 species in Pteridaceae in Korea and among them medicinal plants are 10 genera, 19 species, some 58% in total. 2: Adiantum genus is main kind enough that it has 5 species among 33 species in Pteridaceae, of which medicinal plants are 4 species. 3: The herb is the main medicinal parts if medicinal plants in the Pteridaceae, which is used in 18 species. 4: According to nature and flavor of medicinal plants in the Pteridaceae, they were classified into cold 15 species, and cool 11; bitter taste 12, little bitter taste 11 and sweet taste 5 in the order. 5: According to meridian propism of medicinal plants in the Pteridaceae, they were classified into liver meridian 15 species, lung and large intestine meridian 8 species, heart meridian 6 species. 6: According to the properties and principal curative action, they were classified into drugs for clearing away heat 24 species, drugs for detoxification 22 species, drugs for promoting diuresis 12 species in the order. 7: The number of toxic species in the Pteridaceae was examined to be 2 species. Conclusions : There are totaled to 12 genera and 33 species in Pteridaceae in Korea and among them medicinal plants are 10 genera, 19 species, some 58% in total.

  • PDF

Reliability Analysis for Fracture of Concrete Armour Units (콘크리트 피복재의 단면파괴에 대한 신뢰성 해석)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.86-96
    • /
    • 2003
  • A fracture or breakage of the concrete armor units in the primary cover layer of breakwaters is studied by using the reliability analysis which may be defined as the structural stability. The reliability function can be derived as a function of the angle of rotation that represents the rocking of armor units quantitatively. The relative influences of all of random variables related to the material and geometric properties on the fracture of armor units is analyzed in detail. In addition, the probability of failure for the fracture of individual armor unit can be evaluated as a function of the incident wave height. Finally, Bernoulli random process and the allowable fracture ratio may be introduced together in this paper, by which the probability of failure of a breakwater due to the fracture of armer units can be obtained straightforwardly. It is found that the probability of failure of a breakwater due to the fracture of armor units may be varied with the several allowable fracture ratios. Therefore, it should be necessary to consider the structural stability as well as the hydraulic stability for the design of breakwaters with multi-leg slender concrete armor units of large size under wave action in deep water.

Seismic Performance Evaluation of a Mid-rise General Hospital Building (중층 종합병원 건물의 내진성능평가)

  • Kim, Taewan;Chu, Yurim;Kim, Seung Rae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.245-254
    • /
    • 2017
  • The building which are essential for disaster recovery is classified as a special seismic use group. Especially, achievement of seismic performance is very important for the hospital, so the hospital should be able to maintain its function during and right after an earthquake without significant damage on both structural and non-structural elements. Therefore, this study aimed at checking the seismic performance of a hospital building, but which was limited to structural elements. For the goal, a plan with a configuration of general hospitals in Korea was selected and designed by two different seismic-force-resisting systems. In analytical modeling, the shear behavior of the wall was represented by three inelastic properties as well as elastic. Nonlinear dynamic analyses were conducted to evaluate the performance of structural members. The result showed that the performance of shear walls in the hospital buildings was not satisfied regardless of the seismic-force-resisting systems, while the demands on the beams and columns did not exceed the capacities. This is the result of only considering the shear of the wall as the force-controlled action. When the shear of the wall was modeled as inelastic, the walls were yielded in shear, and as the result, the demands for frames were increased. However, the increase did not exceed the capacities of the frames members. Consequently, since the performance of walls is significant to determine the seismic performance of a hospital building, it will be essential to establish a definite method of modeling shear behavior of walls and judging their performance.

NUMERICAL APPROACH FOR QUANTIFICATION OF SELFWASTAGE PHENOMENA IN SODIUM-COOLED FAST REACTOR

  • JANG, SUNGHYON;TAKATA, TAKASHI;YAMAGUCHI, AKIRA;UCHIBORI, AKIHIRO;KURIHARA, AKIKAZU;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.700-711
    • /
    • 2015
  • Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called "self-wastage phenomena." A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodiumwater reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm).

Effects of Korean ginseng berry on skin antipigmentation and antiaging via FoxO3a activation

  • Kim, Juewon;Cho, Si Young;Kim, Su Hwan;Cho, Donghyun;Kim, Sunmi;Park, Chan-Woong;Shimizu, Takahiko;Cho, Jae Youl;Seo, Dae Bang;Shin, Song Seok
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.277-283
    • /
    • 2017
  • Background: The ginseng berry has various bioactivities, including antidiabetic, anticancer, antiinflammatory, and antioxidative properties. Moreover, we have revealed that the active antiaging component of the ginseng berry, syringaresinol, has the ability to stimulate longevity via gene activation. Despite the many known beneficial effects of ginseng, its effects on skin aging are poorly understood. In this study, we investigated the effects of ginseng and the ginseng berry on one of the skin aging processes, melanogenesis, and age-related pigment lipofuscin accumulation, to elucidate the mechanism of action with respect to antiaging. Methods: The human melanoma MNT1 cell line was treated with ginseng root extract, ginseng berry extract, or syringaresinol. Then, the cells were analyzed using a melanin assay, and the tyrosinase activity was estimated. The Caenorhabditis elegans wild type N2 strain was used for the life span assay to analyze the antiaging effects of the samples. A lipofuscin fluorescence assay was performed during 10 passages with the syringaresinol treatment. Results: A 7-d treatment with ginseng berry extract reduced melanin accumulation and tyrosinase activity more than ginseng root extract. These results may be due to the active compound of the ginseng berry, syringaresinol. The antimelanogenic activity was strongly coordinated with the activation of the longevity gene foxo3a. Moreover, the ginseng berry extract had more potent antiaging effects, caused a life span extension, and reduced lipofuscin accumulation. Conclusion: Taken together, our results suggest that these antimelanogenic effects and antiaging effects of ginseng berry mediate the activation of antioxidation-FoxO3a signaling.

Korean Red Ginseng and Korean black ginseng extracts, JP5 and BG1, prevent hepatic oxidative stress and inflammation induced by environmental heat stress

  • Song, Ji-Hyeon;Kim, Kui-Jin;Chei, Sungwoo;Seo, Young-Jin;Lee, Kippeum;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.267-273
    • /
    • 2020
  • Background: Continuous exposure to high temperatures can lead to heat stress. This stress response alters the expression of multiple genes and can contribute to the onset of various diseases. In particular, heat stress induces oxidative stress by increasing the production of reactive oxygen species. The liver is an essential organ that plays a variety of roles, such as detoxification and protein synthesis. Therefore, it is important to protect the liver from oxidative stress caused by heat stress. Korean ginseng has a variety of beneficial biological properties, and our previous studies showed that it provides an effective defense against heat stress. Methods: We investigated the ability of Korean Red Ginseng and Korean black ginseng extracts (JP5 and BG1) to protect against heat stress using a rat model. We then confirmed the active ingredients and mechanism of action using a cell-based model. Results: Heat stress significantly increased gene and protein expression of oxidative stress-related factors such as catalase and SOD2, but treatment with JP5 (Korean Red Ginseng extract) and BG1 (Korean black ginseng extract) abolished this response in both liver tissue and HepG2 cells. In addition, JP5 and BG1 inhibited the expression of inflammatory proteins such as p-NF-κB and tumor necrosis factor alpha-α. In particular, JP5 and BG1 decreased the expression of components of the NLRP3 inflammasome, a key inflammatory signaling factor. Thus, JP5 and BG1 inhibited both oxidative stress and inflammation. Conclusions: JP5 and BG1 protect against oxidative stress and inflammation induced by heat stress and help maintain liver function by preventing liver damage.

Studies on the Decomposition of Environmental Pollutants by Utilizing Microorganisms (미생물을 이용한 환경오염원의 분해에 관한 연구 II)

  • 이재구;김기철;김창한
    • Korean Journal of Microbiology
    • /
    • v.20 no.2
    • /
    • pp.53-66
    • /
    • 1982
  • 1. When Chong Ju and Chung Ju soils possessing different physicochemical properties were treated with 500 ppm of TOK and incubated in flooded anaerobic condition for 2, 4, and 6 months, respectively, they produced 4-Chloro-4'-amino diphenyl ether, 2,4-Dichloro-4'-amino diphenyl ether(amin-TOK), N-[4'-(4-Chlorophenoxy)] phenyl acetamide, and N-[4'-(4-Chlorophenoxy)] phenyl formamide as the metabolities. This result indicates that TOK undergose the reduction of its $NO_2\;to\;NH_2$ group, dechlorination, acetylation, and formylation under this condition. The cleavage of ether linkage does not occur. In addition, TOK degrades more readily in Chung Ju soil which is characterized by pH 6.43 and higher contents of $Ca^{++}$ and C.E.C. than in Chong Ju soil which is lower in pH, $Ca^{++}$, and C.E.C. 2. In the aerobic incubation of TOK of 25ppm in Chung Ju soil suspension for 21 days, the ratio of the resulting metabolites, TOK : amino-TOK : 4-Chloro-4'-amino diphenyl ether was 100 : 130 : 76. Meanwhile, in the 42 day incubation, the ratio was 100 : 19 : 5, which indicates that TOK in aerobic condition dose not necessrily degrade as a function of the incubation period. 3. The citrate buffer extract of Chung Ju soil has the capability of degrading TOK, which was verified to be due to the action of the microorganisms involved. 4. Twelye strains of soil bacteria were isolated from the TOK-treated soils. In the incubation of TOK in pure cultures of the respective isolates, the strain T-1-1 isolated from Chong Ju soil had almost no degradability whereas the strain T-2-3 was the most potent. The degradation of TOK by the isolates constituted mostly the reduction of the nitro group to amino group. 5. In a test for the degradability of TOK by some selected microorganisms, Pseudomonas species were more potent than fungi. Yet, Isolate B which had been isolated from Chung Ju soil suspension was the most potent.

  • PDF

Bond Stress in Concrete Pilled Steel Tubular Column (CFT 기둥의 부착응력에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.93-98
    • /
    • 2001
  • CFT column has excellent structural properties due to the composite action between concrete and steel tube. The bond behavior between the constituent elements has to be found for analyzing the behavior of CFT column. A new model is necessary because most of existing models for bond stress-slip relationship of the deformed bar cannot be applied to the CFT column. Therefore, the objective of this research is to develop a new model related to the bond behavior of CFT column considering the relation between bond stress and vertical stress, and the distribution of lateral stress under the confinement created by steel casing. From equilibrium condition, the formula for relationship between bond stress and vertical stress is derived, and the relationship for the lateral stresses of the CFT column section is obtained by an Airy stress function. The experiments are performed for five CFT column specimens axially loading on concrete alone. The relation between bond strength and lateral stress is investigated from the regression analysis using the measured strains. Finally a new bond strength model is proposed, which is able to predict the relationship for the stress of each direction of CFT column loading on concrete.

The Behavior of Reinforced Concrete Coupling Elements in Wall-Dominant System (벽식 아파트 구조에서 연결부재의 거동특성)

  • 장극관;서대원;천영수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.83-91
    • /
    • 2002
  • A common form of construction for apartment buildings consists of walls and coupling elements. But, the structural behavior of coupling elements are very complex and affected by the properties of coupling elements. The objective of this study is to estimate the behavior of coupling elements in wall-dominant systems. For the purpose of this study, two wall-slab specimens and two wall-beam specimens were tested. The specimens with different reinforcement layouts were subjected to reversed cyclic loading, consistent with coupling action, with increasing imposed inelastic deformations. From the results of this study, 1) in coupling slabs, the stresses were not uniform across the width, 2) the effective width of coupling slabs was found smaller than that of predicted from previous studies, 3) diagonally reinforced coupling beam with slab showed larger ductility and more amount of energy dissipation to be attained compared with conventionally reinforced coupling beam.