• Title/Summary/Keyword: actin bundling protein

Search Result 7, Processing Time 0.021 seconds

Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba

  • Alafag Joanna It-itan;Moon Eun-Kyung;Hong Yeon-Chul;Chung Dong-Il;Kong Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.4 s.140
    • /
    • pp.331-341
    • /
    • 2006
  • Actin binding proteins play key roles in cell structure and movement particularly as regulators of the assembly, stability and localization of actin filaments in the cytoplasm. In the present study, a cDNA clone encoding an actin bundling protein named as AhABP was isolated from Acanthamoeba healyi, a causative agent of granulomatous amebic encephalitis. This clone exhibited high similarity with genes of Physarum polycephalum and Dictyostelium discoideum, which encode actin bundling proteins. Domain search analysis revealed the presence of essential conserved regions, i.e., an active actin binding site and 2 putative calcium binding EF-hands. Transfected amoeba cells demonstrated that AhABP is primarily localized in phagocytic cups, peripheral edges, pseudopods, and in cortical cytoplasm where actins are most abundant. Moreover, AhABP after the deletion of essential regions formed ellipsoidal inclusions within transfected cells. High-speed co-sedimentation assays revealed that AhABP directly interacted with actin in the presence of up to $10{\mu}M$ of calcium. Under the electron microscope, thick parallel bundles were formed by full length AhABP, in contrast to the thin actin bundles formed by constructs with deletion sites. In the light of these results, we conclude that AhABP is a novel actin bundling protein that is importantly associated with actin filaments in the cytoplasm.

The Role of Abp140p in Actin Dynamics of Budding Yeast

  • Lim, Bum-Soon;Lee, Yong-Keun;Pon, Liza A.;Yang, Hyeong-Cheol
    • International Journal of Oral Biology
    • /
    • v.30 no.1
    • /
    • pp.17-22
    • /
    • 2005
  • In the previous studies of Saccharomyces cerevisiae, Abp140p (actin binding protein 140) fused to GFP has been only a protein that can label actin cables of yeast cells so far. However, the role of Abp140p in actin dynamics was remained elusive. In this study, the function of Abp140p was investigated with a deletion mutant and overexpression of GFP fused Abp140p. The deletion mutant was slightly more susceptible to Latrunculin-A (Lat-A), an actin-monomer sequestering agent, than wild type, although no significant deformation of actin structures was caused by ABP 140 deletion. Overexpression of Abp140p-GFP retarded cell growth, and produced thick and robust actin cables. Lat-A was not able to destabilize the thick actin cables, which suggests that actin dynamics was compromised in the cells with surplus of Abp140p. Therefore, Abp140p seems to stabilize actin cables together with other bundling proteins. Recently, actin cable dynamics of budding yeast was found to have a resemblance to that of filopodial tip of cultured mammalian cells. Retrograde movement of actin cables from buds to mother cells indicated local generation of the cable at bud sites. By using Abp140p-GFP, we traced the steps in the generation of a new actin cable after elimination of old cables by sodium azide. Before the appearance of a new actin cable, Abp140p-GFP concentrated in buds and disappeared, as mother cells became abundant in actin cables. Our observations provide a direct evidence of actin cable formation at buds of budding cells.

Comprehensive Bioinformation Analysis of the MRNA Profile of Fascin Knockdown in Esophageal Squamous Cell Carcinoma

  • Wu, Bing-Li;Luo, Lie-Wei;Li, Chun-Quan;Xie, Jian-Jun;Du, Ze-Peng;Wu, Jian-Yi;Zhang, Pi-Xian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7221-7227
    • /
    • 2013
  • Background: Fascin, an actin-bundling protein forming actin bundles including filopodia and stress fibers, is overexpressed in multiple human epithelial cancers including esophageal squamous cell carcinoma (ESCC). Previously we conducted a microarray experiment to analyze fascin knockdown by RNAi in ESCC. Method: In this study, the differentially expressed genes from mRNA expression profilomg of fascin knockdown were analyzed by multiple bioinformatics methods for a comprehensive understanding of the role of fascin. Results: Gene Ontology enrichment found terms associated with cytoskeleton organization, including cell adhesion, actin filament binding and actin cytoskeleton, which might be related to fascin function. Except GO categories, the differentially expressed genes were annotated by 45 functional categories from the Functional Annotation Chart of DAVID. Subpathway analysis showed thirty-nine pathways were disturbed by the differentially expressed genes, providing more detailed information than traditional pathway enrichment analysis. Two subpathways derivated from regulation of the actin cytoskeleton were shown. Promoter analysis results indicated distinguishing sequence patterns and transcription factors in response to the co-expression of downregulated or upregulated differentially expressed genes. MNB1A, c-ETS, GATA2 and Prrx2 potentially regulate the transcription of the downregulated gene set, while Arnt-Ahr, ZNF42, Ubx and TCF11-MafG might co-regulate the upregulated genes. Conclusions: This multiple bioinformatic analysis helps provide a comprehensive understanding of the roles of fascin after its knockdown in ESCC.

Network Analyses of Gene Expression following Fascin Knockdown in Esophageal Squamous Cell Carcinoma Cells

  • Du, Ze-Peng;Wu, Bing-Li;Xie, Jian-Jun;Lin, Xuan-Hao;Qiu, Xiao-Yang;Zhan, Xiao-Fen;Wang, Shao-Hong;Shen, Jin-Hui;Li, En-Min;Xu, Li-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5445-5451
    • /
    • 2015
  • Fascin-1 (FSCN1) is an actin-bundling protein that induces cell membrane protrusions, increases cell motility, and is overexpressed in various human epithelial cancers, including esophageal squamous cell carcinoma (ESCC). We analyzed various protein-protein interactions (PPI) of differentially-expressed genes (DEGs), in fascin knockdown ESCC cells, to explore the role of fascin overexpression. The node-degree distributions indicated these PPI sub-networks to be characterized as scale-free. Subcellular localization analysis revealed DEGs to interact with other proteins directly or indirectly, distributed in multiple layers of extracellular membrane-cytoskeleton/ cytoplasm-nucleus. The functional annotation map revealed hundreds of significant gene ontology (GO) terms, especially those associated with cytoskeleton organization of FSCN1. The Random Walk with Restart algorithm was applied to identify the prioritizations of these DEGs when considering their relationship with FSCN1. These analyses based on PPI network have greatly expanded our comprehension of the mRNA expression profile following fascin knockdown to future examine the roles and mechanisms of fascin action.

T-plastin contributes to epithelial-mesenchymal transition in human lung cancer cells through FAK/AKT/Slug axis signaling pathway

  • Soon Yong Park;Hyeongrok Choi;Soo Min Choi;Seungwon Wang;Sangin Shim;Woojin Jun;Jungkwan Lee;Jin Woong Chung
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.305-310
    • /
    • 2024
  • T-plastin (PLST), a member of the actin-bundling protein family, plays crucial roles in cytoskeletal structure, regulation, and motility. Studies have shown that the plastin family is associated with the malignant characteristics of cancer, such as circulating tumor cells and metastasis, by inducing epithelial-mesenchymal transition (EMT) in various cancer cells. However, the role of PLST in the EMT of human lung cancer cells remains unclear. In this study, we observed that PLST overexpression enhanced cell migratory and invasive abilities, whereas its downregulation resulted in their suppression. Moreover, PLST expression levels were associated with the expression patterns of EMT markers, including E-cadherin, vimentin, and Slug. Furthermore, the phosphorylation levels of focal adhesion kinase (FAK) and AKT serine/threonine kinase (AKT) were dependent on PLST expression levels. These findings indicate that PLST induces the migration and invasion of human lung cancer cells by promoting Slug-mediated EMT via the FAK/AKT signaling pathway.

Independent Prognostic Value of the Fascin Expression in Patients with Esophageal Cancer (식도암에 있어서 Fascin의 발현과 예후와의 상관관계에 대한 연구)

  • Choi, Pill-Jo;Jeong, Sang-Seok;Bang, Jung-Heui;Cho, Kwang-Jo;Woo, Jong-Soo;Roh, Mee-Sook
    • Journal of Chest Surgery
    • /
    • v.41 no.1
    • /
    • pp.74-81
    • /
    • 2008
  • Background: Fascin is an actin-bundling protein that induces membrane protrusions and it increases cell motility in various transformed cells. Esophageal cancer is one of the most lethal malignancies, and it exhibits extensive local invasion or frequent regional lymph node metastasis even after curative surgery. We investigate the expression of fascin by performing immunohistochemistry to evaluate the clinical characteristics and prognostic significance of its expression in esophageal cancer patients. Material and Method: Immunochemistry for fascin was performed on 76 tumor samples from 76 patients who underwent esophageal cancer operations. The expression levels of fascin in the 76 esophageal cancer tissues were compared with those in the corresponding normal esophageal epithelium. The fascin-positive samples were defined as those showing more than 75% of fascin-positive cells. Result: Overall, a fascin positive expression was detected in 39 (51.3%) out of the total 76 cases. The tumors with positive fascin expression tended to more frequently show a higher stage (p=0.030), and a higher T-factor (p=0.031). The prognosis of the fascin negative group was significantly better than that of the fascin positive group (p=0.004). Multivariate analysis revealed that lymphovascular invasion and the fascin expression were independent prognostic factors. Conclusion: Fascin was expressed in 513% of the esophageal cancer tissues and a positive expression of fascin was associated with more advanced tumor progression and recurrence. Our study suggests that the fascin expression may be an independent prognostic factor for an unfavorable clinical course few those patients suffering with esophageal cancer.

Prognostic Significance of Fascin Expression in Stage I Non-small Cell Lung Cancer (수술 절제를 시행받은 제1기 비소세포폐암 환자에서의 Fascin 발현과 예후)

  • Roh, Mee-Sook;Um, Su-Jung;Choi, Youngmin;Kim, Ki-Nam;Choi, Pil Jo;Lee, Soo-Keol;Son, Choonhee;Yang, Dookyung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.2
    • /
    • pp.105-109
    • /
    • 2008
  • Background: Fascin is an actin-bundling protein that plays an important role in cellular motility. Fascin is normally expressed in the neuronal and mesenchymal cells and its expression is low or absent in the epithelia. However, an overexpression of fascin has been linked to the invasive behavior of some neoplasms such as breast, stomach and ovarian tumors. In this study, we evaluated the expression of fascin and its prognostic significance in stage I non-small cell lung cancer (NSCLC). Methods: Immunohistochemical staining for fascin was performed on the paraffin-embeded tissue sections of 81 cases of resected NSCLC. Staining of more than 5% of the tumor cells was recorded as positive immunoreactivity. Results: Fascin expression was seen in 73% (59/81) of the cases and this was more frequently seen in squamous cell carcinoma than in adenocarcinoma (93% vs 42%). There were no significant correlations of fascin immunoreactivity with tumor recurrence and overall survival. Conclusion: The expression rate of fascin was relatively high in NSCLC, but this was without prognostic significance. The exact clinical role of fascin should be defined through further investigations.