• Title/Summary/Keyword: acrylic resins

Search Result 135, Processing Time 0.031 seconds

Effect of biofilm formation, and biocorrosion on denture base fractures

  • Sahin, Cem;Ergin, Alper;Ayyildiz, Simel;Cosgun, Erdal;Uzun, Gulay
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.140-146
    • /
    • 2013
  • PURPOSE. The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. MATERIALS AND METHODS. Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (${\alpha}$=0.05). RESULTS. Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P<.05); microorganisms diffused at least 52% of the denture base surface. The highest median quantitative biofilm value within all the denture base materials was obtained with P. aeruginosa on Lucitone 550. The type of denture base material did not alter the diffusion potential of the microorganisms significantly (P>.05). CONCLUSION. All the tested microorganisms had destructive effect over the structure and composition of the denture base materials.

Development of IR Reflective Cool Pigment and Paint (차열도료용 Cool Pigment 및 Paint 개발)

  • Kwon, Myon-Joo;Do, Young-Woong;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3800-3805
    • /
    • 2012
  • Infrared(IR) reflective black cool pigment and paint which is used for interior/exterior materials(IR reflectance >30%) to prevent heat island effect and to increase energy efficiency were studied. Cool pigment was synthesized using mixture of $Fe_2O_3$ and $Cr_2O_3$ with calcination from 900 to $1,200^{\circ}C$. Cool paint was prepared by formulation of cool pigment, acrylic resins, and other additives. Results showed that optimum color fixation of pigment obtained by mole ratio of Fe to Cr was 0.9 with calcination temperature at $1,000^{\circ}C$. The cool paint formulated by 20% pigment and 1.5% dispersive additive with $125{\mu}m$ thickness of coated layer showed optimum IR reflectance. Temperature difference on surface between cool paint and ordinary paint(STD) was $36.5^{\circ}C$ and IR reflectance(TSR) was 39.3% at wavelength from 700 to 2,500nm. And color change was not detected during 500hrs weathering test.

Effect of repair methods and materials on the flexural strength of 3D-printed denture base resin

  • Viotto, Hamile Emanuella do Carmo;Silva, Marcela Dantas Dias;Nunes, Thais Soares Bezerra Santos;Coelho, Sabrina Romao Goncalves;Pero, Ana Carolina
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.5
    • /
    • pp.305-314
    • /
    • 2022
  • PURPOSE. The aim of this study was to evaluate the flexural strength of a 3D-printed denture base resin (Cosmos Denture), after different immediate repair techniques with surface treatments and thermocycling. MATERIALS AND METHODS. Rectangular 3D-printed denture base resin (Cosmos Denture) specimens (N = 130) were thermocycled (5,000 cycles, 5℃ and 55℃) before and after the different repair techniques (n = 10 per group) using an autopolymerized acrylic resin (Jet, J) or a hard relining resin (Soft Confort, SC), and different surface treatments: Jet resin monomer for 180 s (MMA), blasting with aluminum oxide (JAT) or erbium: yttrium-aluminum-garnet laser (L). The control group were intact specimens. A three-point flexural strength test was performed, and data (MPa) were analyzed by ANOVA and Games-Howell post hoc test (α = 0.05). Each failure was observed and classified through stereomicroscope images and the surface treatments were viewed by scanning electron microscope (SEM). RESULTS. Control group showed the highest mean of flexural strength, statistically different from the other groups (P < .001), followed by MMA+J group. The groups with L treatment were statistically similar to the MMA groups (P > .05). The JAT+J group was better than the SC and JAT+SC groups (P < .05), but similar to the other groups (P > .05). Adhesive failures were most observed in JAT groups, especially when repaired with SC. The SEM images showed surface changes for all treatments, except JAT alone. CONCLUSION. Denture bases fabricated with 3D-printed resin should be preferably repaired with MMA+J. SC and JAT+SC showed the worst results. Blasting impaired the adhesion of the SC resin.

Synthesis and Characterisation of Acrylic-Modified Water-Reducible Alkyd Resin 1. Modification by TMPTA Graft Copolymerization (수용성 아크릴 변성 알키드수지의 합성과 물성 1.TMPTA그라프트 공중합에 의한 변성)

  • Cho, Young-Ho;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.823-829
    • /
    • 1993
  • The basic medium oil modified alkyd resin was synthesized from linseed oil fatty acid(LOFA), phthalic anhydride(PAA), trimellitic anhydride(TMA ), and trimthylol propane(TMP) by condensation polymerization at $230^{\circ}C$. TMPTA modified water-reducible alkyd resins were synthesized with TMPTA graft copolymerization onto the basic resin at $180^{\circ}C$. Acid value of the resin was controlled by the addition of TMA and N,N-Dimethylethanol amino(DMEA) was used as an neutralizing agent to prepare water-reducible alkyd. To evaluate the optimum formulation for anionic alkyd resin, water proofness and water reducibility were estimated from the acid value or TMA contents. The effect of TMPTA on the graft copoymerization of the resin was studied by measuring molecular weight, glass transition temperature(Tg), viscosity, and gel contents. The suitable balance of water proofness and water reducibility of the resin was obtained at range of 5.3~7.0wt.% of TMA contents or 40~50 of acid value of basic resin. The molecular weight, viscosity, and gel contents of water-reducible alkyd resin were increased according to the TMPTA graft copolymerization, but Tg was decreased.

  • PDF

Durability of Polymer-Modified Mortars Using Acrylic Latexes with Methyl Methacrylate (MMA계 아크릴 라텍스를 혼입한 폴리머시멘트 모르타르의 내구성)

  • Hyung Won-Gil;Kim Wan-Ki;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.411-418
    • /
    • 2005
  • Polymer-modified mortar and concrete are prepared by mixing either a polymer or monomer in a dispersed, or liquid form with fresh cement mortar and concrete mixtures, and subsequently curing, and if necessary, the monomer contained in the mortar or concrete is polymerized in situ. Although polymers and monomers in any form such as latexes, water-soluble polymers, liquid resins, and monomers are used in cement composites such as mortar and concrete, it is very important that both cement hydration and polymer phase formation proceed well the yield a monolithic matrix phase with a network structure in which the hydrated cement phase and polymer phase interpenetrate. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete. The purpose of this study is to obtain the necessary basic data to develope appropriate latexes as cement modifiers, and to clarify the effects of the monomer ratios and amount of emulsifier on the properties of the polymer-modified mortars using methyl methacrylate-butyl acrylate(MMA/BA) and methyl methacrylate-ethyl acrylate(MMA/EA) latexes. The results of this study are as follows, the water absorption, chloride ion penetration depth and carbonation depth of MMA/BA-modified mortar are lowest. However, they are greatly affected by the polymer-cement ratio rather than the bound MMA content and type of polymer.

A Study on Painting Layer Fixative Processing of Mural Paintings of Buddhist Temples in Korea (한국 사찰벽화 채색층 고착처리제 적용 연구)

  • Lee, Haw-Soo;Han, Kyeong-Soon;Lee, Sang-Jin
    • Journal of Conservation Science
    • /
    • v.29 no.1
    • /
    • pp.81-92
    • /
    • 2013
  • In the past, European material and method were applied to conservation of Buddhist mural paintings in Korea. At that time, there were inadequate to selection of materials in consideration of porosity and hydrophilicity, therefore insufficiency to assessing their suitability for materials. The treatment result of mural painting are dissatisfied with consolidation of painting layer using synthetic resin. Therefore, it has experimented on applying fixative for reinforcement of painting layer on Buddhist mural painting in order to establish the effects of conservation. In relationship of binder's viscosity, adhesion and penetrating depth, adhesion increased in high-viscosity specimen whereas it decreased in low-viscosity specimen. While the binder's penetrating depths show similar patterns, the surface's response and combination adjacent to painting layer have differences. Animal glue and methyl cellulose (MC) shows excellent performance in their reaction with soil and painting layer. It is estimated that the fixative penetrates deep into soil to produce a stable fixing effect. The viscosity of polyvinyl acetate resin (PVAc) and acrylic resins are low, and thus penetrates well into soil, but they adhere poorly to soil.

Synthesis and Characterization of Acrylic-Modified Water-Reducible Alkyd Resin 2. Modification by MA and TMPTA Graft Copolymerization (수용성 아크릴 변성 알키드 수지의 합성과 물성 2. MA 및 TMPTA 공중합체에 의한 변성)

  • Cho, Young-Ho;Kang, Ki-Joon;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.698-705
    • /
    • 1994
  • The basic medium oil modified alkyd resin was synthesized from linseed oil fatty acid(LOFA), phthalic anhydride(PAA), maleic anhydride(MA) and trimethylol propane(TMP) by condensation polymerization at $230^{\circ}C$. MA/TMPTA modified water-reducible alkyd resins were synthesized with TMPTA graft copolymerization onto the basic resin at $180^{\circ}C$. Acid value of the resin was controlled by the addition amount of MA and N,N-dimethylethanol amine(DMEA) was used as a neutralizing agent to prepare of the water-reducible alkyd resin. The effect of TMPTA on the graft copolymerization of the resin was studied by measuring molecular weight glass transition temperature(Tg), viscosity, graft efficiency, and gel contents of melanin cured film. Heat resistance, UV resistance and water resistance of cured film of MA/TMPTA modified resin was compared to those of TMA/TMPTA modified alkyd resin. The molecular weight, viscosity gel contents and graft efficiency of water reducible alkyd resin were increased according to the TMPTA graft copolymerization, but Tg was decreased. The viscosity was lower when the solid contents reached 40% than that of 30% content and also and also became lower with the extent of neutralization ratio, The heat resistance, UV resistance and water resistance of the MA/TMPTA modified alkyd resis were better than those of TMA/TMPTA modified alkyd resin but the storage stability of the TMA/TMPTA alkyd resis was better than that of MA/TMPTA modified alkyd resin.

  • PDF

STUDY OF THE TENSILE BOND STRENGTH OF COMPOSITES RESINS APPLIED TO ACID-ECHED ENAMEL (산처리(酸處理)된 Enamel표면(表面)에 대(對)한 Composite resin의 인장접착강도(引張接着强度)에 관(關)한 연구(硏究))

  • Lee, Young-Kun;Min, Byung-Soon;Choi, Ho-Young;Park, Sung-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 1987
  • The purpose of this study was to evaluate the tensile bond strength between composite resin and the human enamel. Three composite resin systems, two chemical (Clearfil Posterior, and Clearfil Posterior-3) and one light cure (Photo Clearfil-A), used with and without an intermediate resin (clearfil bonding agent), were evaluated under different amounts of load (10g, 200g and 200g for a moment) for in vitro tensile bond strength to acid-eched human enamel. Clinically intact buccal or lingual surfaces of 144 freshly extracted human permanent molars, embedded in acrylic were flattened with No #600 carborundum discs. Samples were randomly assigned to the different materials and treatments using a table of random numbers. Eight samples were thus prepared for each group(Table 2) these surfaces were etched with an acid etchant (Kurarey Co. Japan) in a mode of etching for 30 seconds, washing for 15 seconds, and drying for 30-seconds. During the polymerization of composite resin on the acid-etched enamel surfaces with and without bonding agent 10-gram, 200 gram and temporary 200 gram of load were applied. The specimens were stored in 50% relation humidity at $37^{\circ}C$ for 24 hours before testing. An universal Testing machine (Intesco model No. 2010, Tokyo, Japan) was used to apply tensile loads in the vertical directed (fig 5), and the force required for separation was recorded with a cross head speed of 0.25 mm/min and 20 kg in full scale. The results were as follow: 1. The tensile bond strength was much greater in applying a bonding agent than in not doing that. 2. The tensile bond strength of chemical cure composite resin was higher than that of light cure composite resin with applying on bonding agent on the acid-etched enamel. 3. In case of not applying a bonding agents on the acid-etching enamel, the highest tensile bond strength under 200 gram of load was measured in light cure composite resin. 4. The tensile bond strength under 200-gram of load has no relation with applying the bonding agent. 5. Under the load of 10-gram, There was significant difference in tensile bond strength as applying the bonding agent.

  • PDF

REGIONAL MICRO-SHEAR BOND STRENGTH TO DENTIN:EFFECTS OF DENTINAL HARDNESS, POSITION, AND REMAINING DENTIN THICKNESS (상아질의 경도, 위치 및 잔존 상아질 후경이 상아질에 대한 부위별 미세 전단결합강도에 미치는 영향)

  • Hwang, Seon-Seong;Im, Mi-Kyung;Lee, Yong-Keun
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.401-412
    • /
    • 1998
  • The aim of this study was to measure the regional micro-shear bond strength of dentin bonding agents to dentin, and to investigate the relationship between the micro-shear bond strength and two dentinal characteristics ; Vickers hardness and remaining dentin thickness. Twenty-four freshly extracted, noncarious human molars were selected for this study. The materials tested in this study consisted of two commercially available dentin bonding agents (MAC-BOND, ONE-STEP) and two restorative light-cured composite resins (AELITEFIL, Z100). The occlusal or side surface of tooth crown was sectioned to expose dentin, and the exposed surface was finally polished with # 600 sandpaper. Four groups of application methods were used combining the filling materials and the dentin bonding agents. The composite resin-attached tooth specimens were embeded in a cold cure acrylic resin, and were cut with a low speed diamond saw to the dimension of 1mm $\times$ 1mm. Nine specimens were obtained from each tooth. The cut specimens were divided into three groups depending on the position of the dentin bonding surface. The micro-shear bond strength, remaining dentin thickness, and dentinal hardness were measured. Experimental results were then statistically analyzed with ANOVA. t-test, Scheffe test, and regression analysis. From this experiment, the following results were obtained : 1. In the case of occlusal surface bonding, the pooled micro-shear bond strength of ONST-AELIT group (16.62 MPa) was significantly higher than that of MACB-AELIT group (9.91 MPa) (p<0.05). However, there was no significant difference in the micro-shear bond strength depending on the dentin position (p>0.05). 2. In the case of side surface bonding of crown, the pooled micro-shear bond strength of four different bonding groups was not significantly different among each other (p>0.05). However, in three of the test groups (ONST-AELIT, MACB-Z100, ONST-Z100), the micro-shear bond strength to the lower 1/3(III) position was significantly lower than that to middle 1/3(II) position of surface (p<0.05). 3. In the ONST-AELIT bonding group, the pooled micro-shear bond strength to the occlusal surface was significantly lower than that to the side surface of crown (p<0.05). 4. There was no significant correlation between the micro-shear bond strength and dentin hardness / remaining dentin thickness (p>0.05).

  • PDF

Optimization of Elastic Modulus and Cure Characteristics of Composition for Die Attach Film (다이접착필름용 조성물의 탄성 계수 및 경화 특성 최적화)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.503-509
    • /
    • 2019
  • The demand for smaller, faster, and multi-functional mobile devices in increasing at a rapidly increasing rate. In response to these trends, Stacked Chip Scale Package (SCSP) is used widely in the assembly industry. A film type adhesive called die attach film (DAF) is used widely for bonding chips in SCSP. The DAF requires high flowability at high die attachment temperatures for bonding chips on organic substrates, where the DAF needs to feel the gap depth, or for bonding the same sized dies, where the DAF needs to penetrate bonding wires. In this study, the mixture design of experiment (DOE) was performed for three raw materials to obtain the optimized DAF recipe for low elastic modulus at high temperature. Three components are acrylic polymer (SG-P3) and two solid epoxy resins (YD011 and YDCN500-1P) with different softening points. According to the DOE results, the elastic modulus at high temperature was influenced greatly by SG-P3. The elastic modulus at $100^{\circ}C$ decreased from 1.0 MPa to 0.2 MPa as the amount of SG-P3 was decreased by 20%. In contrast, the elastic modulus at room temperature was dominated by YD011, an epoxy with a higher softening point. The optimized DAF recipe showed approximately 98.4% pickup performance when a UV dicing tape was used. A DAF crack that occurred in curing was effectively suppressed through optimization of the cure accelerator amount and two-step cure schedule. The imizadole type accelerator showed better performance than the amine type accelerator.