• Title/Summary/Keyword: acrylic polymer

Search Result 368, Processing Time 0.021 seconds

Fabrication of a Film Coated with Conducting Polymer Using One Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 전도성 고분자 코팅 필름 제조)

  • Jung, Jin-Suk;Yang, In-Young;Myung, Sung-Woon;Choi, Ho-Suk;Kim, Jong-Hoon
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.308-314
    • /
    • 2007
  • A composite film of polyurethane(PU)-graft-poly(acrylic acid) (PAAc)/polyaniline (PU-g-AAc/PANI) was successfully fabricated for the purpose of adding conductivity on the surface of a general purpose polymer and improving adhesive property between the general purpose polymer and conducting polymer layer. The results from ATR-FTIR and XPS analyses also supported the successful synthesis of the composite film by showing characteristic peaks for every step. A low surface resistivity of $2{\times}10^3\;ohm/sq$ proved the surface conductivity of synthesized PU-g-AAc/PANI film and the surface resistance decreased with increasing the amount of grafted AAc, which acted as a dopant for PANI film.

Drug Release from Ph-sensitive Interpenetrating Polymer Net-works Hydrogel Based on Poly(ethylene glycol) Macromer and Poly (acrylic acid)Prepared by UV Cured Method

  • Kim, In-Sook;Kim, Sung-Ho;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.19 no.1
    • /
    • pp.18-22
    • /
    • 1996
  • Acrylate-terminated poly (ethylene glycol) (PEG) macromer was prepared by the reaction of PEG with acryloyl chloride. Photopolymerization of PEG macromer resulted in the formation of cross-linked PEG network. Interpenetrating polymer networks (IPNs) based on PEG and poly(acrylic acid) (PAA) was obtained via template polymerization of AA to the PEG network by UV curing. The swelling degree of the IPNs hydrogel increased with an increase of pH value due to the association-dissociation between carboxylic acid of PAA and either of PEG through hydrogen bounding. The swelling-deswelling behavior proceeded reversibly for the IPNs upon changing pH. Release of indomethacin from the IPNs demonstrated "on-off" regulation with pH fluctuation.

  • PDF

Effects of Tape Thickness and Inorganic Fillers on the Adhesion Properties of Double-sided Acrylic Adhesive Tape by Ultraviolet Curing (자외선 경화형 아크릴 양면 점착테이프의 두께 및 무기물 충전제 종류에 따른 접착특성)

  • Kim, Dong-Bok
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.397-405
    • /
    • 2014
  • To manufacture of high-performance semi-structural double-sided adhesive tape, 2-ethylhexyl acrylate (2-EHA) and acrylic acid (AAC) were used, and the syrup was prepared by UV irradiation in this study. The effects of the thickness, various inorganic filler contents, and filler types on the semi-structural properties of acrylic double-sided adhesive tape were investigated. The peel strength increased with increasing thickness and wetting time. In case of the thin thickness (under $250{\mu}m$) with decreasing true density of inorganic filler, the peel strength increased with increasing wetting time. The initial peel strength showed a higher value at a big size of inorganic filler, and the filler's size in adhesive tapes was confirmed by SEM images. The peel strength and dynamic shear strength increased as a proportional relationship with various inorganic fillers and contents, and these inorganic fillers in $0.1{\mu}m$ thickness indicated more effect on the dynamic shear strength of double-sided adhesive tape. From these results the thin acrylic double-sided adhesive tape determined to be use for applications as a high-performance semi-structural.

The Effects of Coupling Agent and Crosslinking Agent in the Synthesis of Acrylic Pressure Sensitive Adhesive for Polarizer Film (편광필름용 아크릴 점착제의 합성에서 커플링제와 가교제의 효과)

  • Lim, Chang-Hyuk;Ryu, Hoon;Cho, Ur-Ryong
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.319-325
    • /
    • 2009
  • The solution polymerization was conducted to synthesize pressure sensitive adhesive for polarizer film using acrylic monomers. 2-Ethylhexylacrylate, butylacrylate, acrylic acid were used as acrylic monomers. The ratio was 2-ethylliexylacrylate:butylacrylate:acrylic acid=25:50:3.6 by reflecting $-40^{\circ}C$ of glass transition temperature in the pressure sensitive adhesive. When 1 wt% of coupling agent was added to the polymerized pressure sensitive adhesive, the light transmissivity was significantly increased. This result is due to the enhancement of adhesive power against liquid crystal cell by Si-O bond of coupling agents. Cross-linking agent was added by 0.5, 1.0, and 1.5 wt% with respect to the synthesized polymer. Initial tackiness decreased, while cohesion increased with increasing crosslinking agent. In the analysis of contact angle, the increase of crosslinking agents yielded the enhancement of surface energy, resulting in the decrease of contact angle. From the measurement of heat resistance, the acrylic pressure sensitive adhesive showed excellent heat resistance regardless of change in temperature and contents in crosslinking agent. In the observation of a cutting plane, the increased crosslinking agent represented a smoother and cleaner section. Comprehensively, the optimum additive amount of crosslinking agent was determined to be 1.0 wt% to monomer.

Effect of aggregation on shear and elongational flow properties of acrylic thickeners

  • Willenbacher, N.;Matter, Y.;Gubaydullin, I.;Schaedler, V.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.109-116
    • /
    • 2008
  • The effect of intermolecular aggregation induced by hydrophobic and electrostatic interactions on shear and elongational flow properties of aqueous acrylic thickener solutions is discussed. Complex shear modulus is determined at frequencies up to $10^4$ rad/s employing oscillatory squeeze flow. Extensional flow behavior is characterized using Capillary Break-up Extensional Rheometry. Aqueous solutions of poly(acrylic acid)(PAA)/poly(vinylpyrrolidone-co-vinylimidazole) (PVP-VI) mixtures exhibit unusual rheological properties described here for the first time. Zero-shear viscosity of the mixtures increases with decreasing pH and can exceed that of the pure polymers in solution by more than two orders of magnitude. This is attributed to the formation of complexes induced by electrostatic interactions in the pH range, where both polymers are oppositely charged. PAA/PVP-VI mixtures are compared to the commercial thickener Sterocoll FD (BASF SE), which is a statistical co-polymer including (meth) acrylic acid and ethylacrylate (EA) forming aggregates in solution due to "sticky" contacts among hydrophobic EA-sequences. PAA/PVP-VI complexes are less compact and more deformable than the hydrophobic Sterocoll FD aggregates. Solutions of PAA/PVP-VI exhibit a higher zero-shear viscosity even at lower molecular weight of the aggregates, but are strongly shear-thinning in contrast to the weakly shear-thinning solutions of Sterocoll FD. The higher ratio of characteristic relaxation times in shear and elongation determined for PAA/PVP-VI compared to Sterocoll FD solutions reflects, that the charge-induced complexes provide a much stronger resistance to extensional flow than the aggregates formed by hydrophobic interactions. This is most likely due to a break-up of the latter in extensional flow, while there is no evidence for a break-up of complexes for PAA/PVP-VI mixtures. These flexible aggregates are more suitable for the stabilization of thin filaments in extensional flows.

Properties of Poly(acrylic acid) Hydrogel by the Surface Charge of Magnetite Nanoparticles (나노 자철광의 표면전하에 따른 Poly(acrylic acid) 수화젤의 물성)

  • Seo Dong-Pil;Kang Hwi-Won;Jeong Chang-Nam
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.412-416
    • /
    • 2006
  • The superparamagnetic nanoparticles were prepared by coprecipitation of $FeCl_3$ and $Na_2SO_3$ with $NH_4OH$ and the surface charge on hydroxyl group by chemisorption was changed depending on pH. We studied correlation between surface charge of magnetite and pH. Using this correlation the properties of poly (acrylic acid) (PAAc) hydrogel embedded with magnetite was studied. The magnetite was characterized by XRD, AFM. and FTIR. The zeta-potential of magnetite was influenced by pH: great positive charge was shown high under the pH 4 and isoelectric point was found at pH 7. The hydrogen bond formed by combining oi PAAc hydrogel and magnetic colloid under pH 4 caused tensile strength to increase, while swelling and elongation at break to decrease. The result confirmed that the magnetic moment was increased proportionally to the content of magnetite.

Synthesis of UV-Curable Six-Functional Urethane Acrylates Using Pentaerytritol Triacrylate and Their Cured Film Properties (Pentaerytritol Triacrylate를 이용한 광경화용 6관능 우레탄 아크릴레이트 합성과 경화필름 물성에 관한 연구)

  • Moon, Byoung-Joon;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.183-188
    • /
    • 2011
  • Pentaerytritol triacrylate (PETA) was synthesized by a condensation reaction between pentaerytritol and acrylic acid. The highest yield of PETA was obtained when heptane was used as a solvent under the 1:4 mole ratio of pentaerytritol and acrylic acid. The 6-functional urethane acrylates(UA) were also synthesized by a condensation reaction between PETA and diisocyanate. Cured films were prepared from the mixtures of UA oligomer, reactive diluents and UV initiator to investigate their physical properties. The thermal stability of the aliphatic urethane acrylate was better than that of the aromatic urethane acrylate. The UA-2 showed good hardness and scratch resistance properties while the UA-l with a high degree of curing density exhibited a better chemical resistance. All the UA oligomers showed fairly good adhesion strengths but the other physical properties of UA-3 were poor due to its low curing density.

Radiolytic Fabrication and Characterization of PTFE-g-PAA as the Supporters for the Reinforced Composite Fuel Cell Membrane (방사선을 이용한 강화 복합 연료전지막 다공성 지지체용 PTFE-g-PAA 제조 및 특성 연구)

  • Sohn, Joon-Yong;Park, Byeong-Hee;Song, Ju-Myung;Lee, Young-Moo;Shin, Junhwa
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.649-655
    • /
    • 2013
  • In order to use as supporters for the reinforced composite fuel cell membrane, poly(acrylic acid)-grafted porous polytetrafluoroethylenes (PTFEs) were prepared via introduction of poly(acrylic acid) graft chains by a radiation grafting method. FTIR was utilized to confirm the successful introduction of poly(acrylic acid) graft polymer chains into the porous PTFEs. Contact angles were examined to observe the hydrophilicity of the surface of the prepared substrates. The result indicates that the hyrophilicity of the surface in the prepared substrates increases with an increase in the number of hydrophilic polymer chains. FE-SEM, gurley number, and tensile strength were also utilized to characterize the prepared substrates.

Film Properties of Weather-Resistant Silicon/Acrylic Coating Resins of Different Compositions (고내후성 도료용 실리콘/아크릴수지의 배합비에 따른 도막물성)

  • 김성래;박형진;김명수;박홍수;김성길
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.615-622
    • /
    • 2002
  • Weather-resistant coatings were prepared by mixing a synthesized mill-base and let-down silicone/acrylic resin in weight ratios of 4 : 6, 3 : 7, and 2 : 8. The weatherability of the prepared coatings was tested. The thermal stability, general physical properties, and weatherability of the films of the coatings were improved with silicone content. Among the three mixing ratios mentioned, the ratio of 2 : 8 was the most suitable for the preparation of weather-resistant Coatings. The coatings containing 30 wt% of silicone proved to be a high weather-resistant coating.