• Title/Summary/Keyword: acrylate polymer

Search Result 313, Processing Time 0.015 seconds

Synthesis and Biocompatibility Study of Hydrogel for Patch Sensor in Non-invasive Glucose Monitoring System (무채혈 혈당 측정시스템의 Patch Sensor용 수화젤의 합성 및 생체적합성에 관한 연구)

  • Kwon, Jeong-Woo;Kim, Dong-Chul;Yoon, In-Joon;Jeong, Yoon-Na;Jeong, Ji-Young;Hwang, In-Sik
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.111-117
    • /
    • 2009
  • This study aims to verify for humans the suitability of the enzyme-fixed hydrogel used for the patch sensor of the blood sugar testing system without blood sampling, which utilizes reverse iontophoresis. Using acrylate monomers, hydrogel was synthesized to which a certain unit of enzyme is fixed. In order to analyze the material property of the synthesized hydrogel, a structural analysis was performed using FT-IR spectroscopy, while the DSC was used to verify the thermal stability. In addition, with the UV-Vis spectrophotometer, it was verified that the degree of active enzyme is at least 50% greater than the standard product. The SEM was used to verify secure fixation of the enzyme onto the surface. As a result, it was observed that the enzyme is successfully fixed to the surface. Since the hydrogel makes direct contact with a patient's skin, it is essential to evaluate the toxicity when making direct contact with the skin. For that purpose, various sets of tests were undertaken according to the ISO 10993-cytotoxicity, intracutaneous reactivity, skin irritation test and maximization sensitization. Consequently, it was successfully verified that the enzyme-fixed hydrogel have bioavailability.

Study on the Preparation and Characterization of Ophthalmic Polymer with High and Low-Water Content

  • Lee, Min-Jae;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.346-351
    • /
    • 2017
  • This study was planned considering the chain length, hydrophilicity, and hydrophobicity of the additives to be used in the polymerization, while various ophthalmic lenses that use various additives with similar water contents were manufactured before their optical and physical properties were compared and analyzed. With regard to the additives required for manufacturing high-, medium-, and low-water content lens groups, HEA (hydroxyethyl acrylate), PVP (polyvinylpyrrolidone), and NMV(N-methyl-N-vinylacetamide) were used as additives for preparing the high-water content lens group, HEMA(2-hydroxyethyl methacrylate), HPMA(hydroxypropyl methacrylate) and BD(1,4-butanediol) were used for the medium-water content lens group. For the low-water content lens group, BMA(buthyl methacrylate), BDDA(1,4-butanediol diacrylate), and Bis-GMA(bisphenol A glycerolate diacrylate) were used, respectively. The average water content of HEA was 40.14%; that of PVP, 39.63%; and that of NMV, 40.52%. The mean of water content was 35.92% for HEMA, 35.74% for BD, and 34.62% for HPMA. For the low-water content lens group, the mean of water content was 26.69% for BMA, 27.76% for BDDA, and 26.14% for Bis-GMA. With regard to the results of the water content measurement using a moisture analyzer, the average water content of the high-water content lens group was 41.34% for HEA, 42.62% for PVP, and 42.73% for NMV. Finally, for the low-water content lens group, the average water content was 28.62% for BMA, 28.82% for BDDA, and 28.32% for Bis-GMA. The measurements of the water contents of the lenses using the two methods showed that the water content and refractive index of the lenses were similar in all the lens groups. The measurements of the contact angles, however, showed a different wettability value for each lens with a similar water content. Also, the change tendency of the lens curvature according to the change of time showed that the change amount became larger and the recovery time became longer from the lens samples with a lower water content to those with a higher water content. Based on these results that will be helpful for the study of ophthalmic lenses.

[Retraction] Preparation of Methyl methacrylate/styrene Core-shell Latex by Emulsion Polymerization ([논문 철회] 유화중합에 의한 Methyl methacrylate/styrene계 Core-shell 라텍스 입자 제조에 관한 연구)

  • Kang, Don-O;Lee, Nae-Woo;Seul, Soo-Duk;Lee, Sun-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2002
  • Core-shell polymers of methyl methacrylate/styrene pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl benzene sulfonate(SDBS) as an emulsifier using ammonium persulfate(APS) as an initiator. The characteristics of these core-shell polymers were evaluated. Core-shell composite latex has the both properties of core and shell components in a particle, where as polymer blonds or copolymers show a combined properties from the physical properties or two homopolymers. This unique behavior of core-shell composite latex can be used in many industrial fields. However, in preparation of core-shell composite latex, several unexpected phenomina are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, we studied the effects of surfactant concentrations, initiator concentrations, and reaction temperature on the tore-shell structure or PMMA/PSt and PSt/PMMA. Particle size and particle size distribution were measured by using particle size analyzer, and the morphology of the core-shell composite latex was observed by using transmission electron microscope. Glass transition temperature($T_g$) was also measured by using differential scanning calorimeter. To identify the core-shell structure, pH of the composite latex solutions were measured.