• Title/Summary/Keyword: acquisition state

Search Result 346, Processing Time 0.021 seconds

SSFP Interferometry (SSFPI) Technique Applied to functional MRI - A Fast and Direct Measurement of Magnetic Susceptibility Effect (SSFPI 기법을 이용한 MR 뇌기능 영상 -고 속의 자화율 효과의 직접적인 측정)

  • 정준영
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.525-534
    • /
    • 1996
  • We have developed a fast steady state free precession interferometry (SSFPI) technique which is useful for the fMRl (functional Magnetic Resonance Imaging). As is known, SSFP sequence with a suitable adjustment of Vadient (readeut) allows us to measure precession angle 6 which in tw relates to the field inhomogeneity. Combining the two pulses (known as FID and Echo) in FADE (Fast Acquisition Double Echo) sequence, for example, one can obtain the interference term which is directly related to the precession angle It has been known that a fast high resolution magnetic field mapping is possible by use of the modified FADE sequence or SSFPI, and we have attempted to use the SSFPI technique for the susceptibility-induced fMRl. When the method is applied to the susceptibility effect based functional magnetic resonance imaging (fMRl), it was found that the direct susceptibility effect measurement was possible without perturbations such as the backgrounds and inflow effect. In this paper, simulation results and experimental results obtained with 2.0 Tesla MRI system are presented.

  • PDF

A Study on the Acquisition of Identification Information from Warship Image with Deep Learning (딥러닝을 적용한 영상기반 군함 식별정보 획득에 관한 연구)

  • Kang, Jiyoung;Kim, Wooju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.55-64
    • /
    • 2022
  • Identifying warships contacted at sea is important to prepare for threats. It is necessary to obtain a basis to identify warships. In this study, we propose a 2-step model that acquires the warship's type and hullnumber with identification information from the warship images. The model classifies the warship's type and detects its hullnumber area by applying object detection, then recognizes hullnumber through text recognition algorithms. Proposed model achieved high performance by using state-of-the-art deep learning algorithms.

Tractor Performance Instrumentation System

  • Wan Ismail, Wan Ishak;Yahya, Azmi;Bardaie, Mohd. Zohadie
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.569-581
    • /
    • 1996
  • A microcomputer -based data acquistion system was designed and developed at Michigan State University , USA to conduct field data studies. The system designed for the research carried out used an Apple IIe microcomputer for collecting data on-board the tractor. An AII3 Analog to Digital (A/D_ convertor was chosen to interface each analog signal to the microcomputer. A commercially available Dj TPM II was employed to display information such as an engine speed, ground speed, percent drive wheel slip , distance travelled and area covered per hour. The frequency output from the radar unit was channeled through a frequency to voltage (F/V) convertor , so that AII3 Analog to Digital (A/D) convertor could read it. The fuel consumption was measured using on EMCO pdp-1 fuel flow meter attached to the engine fuel line. The draft of the tillage and other drag equipment was determined using strain gages attached to the drawbar of the tractor. The system was developed to collect the draft and fuel requirements for various farm equipment different kind of soils.

  • PDF

Development of Diagnostic Expert System for Machining Process Ffailure Detection (가공공정의 이상상태진단을 위한 진단전문가시스템의 개발)

  • Yoo, Song-Min;Kim, Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.147-153
    • /
    • 1997
  • Fault diagnosis technique in machining system which is one of engineering techniques absolutely necessary to automation of manufacturing system has been proposed. As a whole, diagnosis process is explained by two steps: sensor data acquisition and reasoning current state of system with the given sensor data. Flexible disk grinding process implemented in milling machine was employed in order to obtain empirical manufacturing process information. Resistance force data during machining were acquired using tool dynamometer known as sensor which is comparably accurate and reliable in operation. Tool status during the process was analyzed using influnece diagram assigning probability from the statistical analysis procedure.

  • PDF

Opportunities of Organization of Classes in Foreign Languages by Means of Microsoft Teams (in Practice of Teaching Ukrainian as Foreign Language

  • Olha Hrytsenko;Iryna Zozulia;Iryna Kushnir;Tetiana Aleksieienko;Alla Stadnii
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.160-172
    • /
    • 2024
  • The characteristic aspects of learning a foreign language require special resources and tools for online learning. Criteria for choosing educational platforms depend on key elements of an academic subject area. Microsoft Teams (hereafter, MT) educational platform is competitive one because it meets most of the needs that arise during the formation of a secondary linguistic persona. Due to the large number of corporate programs, there are a successful acquisition of language skills and the implementation of all types of oral activities of students. A significant MT advantage is the constant analysis and monitoring of the platform of participants' needs in the educational process by developers. The article highlights MT advantages and disadvantages. The attention is drawn to individual programs, which, in the authors' opinion, are the most successful to learn writing, reading, speaking, listening, as well as organize classes that meet needs of modern foreign students.

Recent Advances in Nuclear Medicine Imaging Instrumentation (핵의학 영상기기의 최근 진보)

  • Jung, Jin-Ho;Choi, Yong;Hong, Key-Jo;Min, Byung-Jun;Hu, Wei;Kang, Ji-Hoon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.98-111
    • /
    • 2008
  • This review introduces advances in clinical and pre-clinical single photon emission computed tomography (SPECT) and positron emission tomography (PET) providing noninvasive functional images of biological processes. Development of new collimation techniques such as multi-pinhole and slit-slat collimators permits the improvement of system spatial resolution and sensitivity of SPECT. Application specific SPECT systems using smaller and compact solid-state detector have been customized for myocardial perfusion imaging with higher performance. Combined SPECT/CT providing improved diagnostic and functional capabilities has been introduced. Advances in PET and CT instrumentation have been incorporated in the PET/CT design that provide the metabolic information from PET superimposed on the anatomic information from CT. Improvements in the sensitivity of PET have achieved by the fully 3D acquisition with no septa and the extension of axial field-of-view. With the development of faster scintillation crystals and electronics, time-of-flight (TOF) PET is now commercially available allowing the increase in the signal-to-noise ratio by incorporation of TOF information into the PET reconstruction process. Hybrid PET/SPECT/CT systems has become commercially available for molecular imaging in small animal models. The pre-clinical systems have improved spatial resolution using depth-of-interaction measurement and new collimators. The recent works on solid state detector and dual modality nuclear medicine instrumentations incorporating MRI and optical imagers will also be discussed.

The Development of Infrared Thermal Imaging Safety Diagnosis System Using Pearson's Correlation Coefficient (피어슨 상관계수를 이용한 적외선 열화상 안전 진단 시스템 개발)

  • Jung, Jong-Moon;Park, Sung-Hun;Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.55-65
    • /
    • 2019
  • With the rapid development of the national industry, the importance of electrical safety was recognized because of a lot of new electrical equipment are installing and the electrical accidents have been occurring annually. Today, the electrical equipments is inspect by using the portable Infrared thermal imaging camera. but the most negative element of using the camera is inspected for only state of heating, the reliable diagnosis is depended with inspector's knowledge, and real-time monitoring is impossible. This paper present the infrared thermal imaging safety diagnosis system. This system is able to monitor in real time, predict the state of fault, and diagnose the state with analysis of thermal and power data. The system consists of a main processor, an infrared camera module, the power data acquisition board, and a server. The diagnostic algorithm is based on a mathematical model designed by analyzing the Pearson's Correlation Coefficient between temperature and power data. To test the prediction algorithm, the simulations were performed by damaging the terminals or cables on the switchboard to generate a large amount of heat. Utilizing these simulations, the developed prediction algorithm was verified.

A Method for Learning Macro-Actions for Virtual Characters Using Programming by Demonstration and Reinforcement Learning

  • Sung, Yun-Sick;Cho, Kyun-Geun
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.409-420
    • /
    • 2012
  • The decision-making by agents in games is commonly based on reinforcement learning. To improve the quality of agents, it is necessary to solve the problems of the time and state space that are required for learning. Such problems can be solved by Macro-Actions, which are defined and executed by a sequence of primitive actions. In this line of research, the learning time is reduced by cutting down the number of policy decisions by agents. Macro-Actions were originally defined as combinations of the same primitive actions. Based on studies that showed the generation of Macro-Actions by learning, Macro-Actions are now thought to consist of diverse kinds of primitive actions. However an enormous amount of learning time and state space are required to generate Macro-Actions. To resolve these issues, we can apply insights from studies on the learning of tasks through Programming by Demonstration (PbD) to generate Macro-Actions that reduce the learning time and state space. In this paper, we propose a method to define and execute Macro-Actions. Macro-Actions are learned from a human subject via PbD and a policy is learned by reinforcement learning. In an experiment, the proposed method was applied to a car simulation to verify the scalability of the proposed method. Data was collected from the driving control of a human subject, and then the Macro-Actions that are required for running a car were generated. Furthermore, the policy that is necessary for driving on a track was learned. The acquisition of Macro-Actions by PbD reduced the driving time by about 16% compared to the case in which Macro-Actions were directly defined by a human subject. In addition, the learning time was also reduced by a faster convergence of the optimum policies.

Fraud Detection in E-Commerce

  • Alqethami, Sara;Almutanni, Badriah;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.312-318
    • /
    • 2021
  • Lack of knowledge and digital skills is a threat to the information security of the state and society, so the formation and development of organizational culture of information security is extremely important to manage this threat. The purpose of the article is to assess the state of information security of the state and society. The research methodology is based on a quantitative statistical analysis of the information security culture according to the EU-27 2019. The theoretical basis of the study is the theory of defense motivation (PMT), which involves predicting the individual negative consequences of certain events and the desire to minimize them, which determines the motive for protection. The results show the passive behavior of EU citizens in ensuring information security, which is confirmed by the low level of participation in trainings for the development of digital skills and mastery of basic or above basic overall digital skills 56% of the EU population with a deviation of 16%. High risks to information security in the context of damage to information assets, including software and databases, have been identified. Passive behavior of the population also involves the use of standard identification procedures when using the Internet (login, password, SMS). At the same time, 69% of EU citizens are aware of methods of tracking Internet activity and access control capabilities (denial of permission to use personal data, access to geographical location, profile or content on social networking sites or shared online storage, site security checks). Phishing and illegal acquisition of personal data are the biggest threats to EU citizens. It have been identified problems related to information security: restrictions on the purchase of products, Internet banking, provision of personal information, communication, etc. The practical value of this research is the possibility of applying the results in the development of programs of education, training and public awareness of security issues.

A Portable Impedance Spectroscopy Instrument for the Measurement of the Impedance Spectrum of High Voltage Battery Pack (고압 배터리 팩의 임피던스 스펙트럼 측정용 휴대용 임피던스 분광기)

  • Rahim, Gul;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • The battery's State of Health (SOH) is a critical parameter in the process of battery use, as it represents the Remaining Useful Life (RUL) of the battery. Electrochemical Impedance Spectroscopy (EIS) is a widely used technique in observing the state of the battery. The measured impedance at certain frequencies can be used to evaluate the state of the battery, as it is intimately tied to the underlying chemical reactions. In this work, a low-cost portable EIS instrument is developed on the basis of the ARM Cortex-M4 Microcontroller Unit (MCU) for measuring the impedance spectrum of Li-ion battery packs. The MCU uses a built-in DAC module to generate the sinusoidal sweep perturbation signal. Moreover, it performs the dual-channel acquisition of voltage and current signals, calculates impedance using a Digital Lock-in Amplifier (DLA), and transmits the result to a PC. By using LabVIEW, an interface was developed with the real-time display of the EIS information. The developed instrument was suitable for measuring the impedance spectrum of the battery pack up to 1000 V. The measurement frequency range of the instrument was from 1 hz to 1 Khz. Then, to prove the performance of the developed system, the impedance of a Samsung SM3 battery pack and a Bexel pouch module were measured and compared with those obtained by the commercial instrument.