• Title/Summary/Keyword: acquisition pattern of Korean

Search Result 188, Processing Time 0.031 seconds

Water Quality Modelling of Flood Control Dam by HSPF and EFDC (HSPF-EFDC 모델을 연계한 홍수조절댐 수질 변화 예측)

  • Lee, Young-Gi;Hwang, Sang-Chul;Hwang, Hyun-Dong;Na, Jin-Young;Yu, Na-Young;Lee, Han-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.251-266
    • /
    • 2018
  • This study predicted the effect of operation pattern of flood control dam on water quality. Flood control dam temporarily impound floodwaters and then release them under control to the river below the dam preventing the river ecosystem from the extreme flood. The Hydrological Simulation Program Fortran (HSPF) and the Environmental Fluid Dynamics Code (EFDC) were adapted to predict the water quality before and after the dam construction in the proposed reservoir. The non-point pollutant delivery load from the river basin was estimated using the HSPF, and the EFDC was used to predict the water quality using the provided watershed boundary conditions from the HSPF. As a result of water quality simulation, it is predicted that the water quality will be improved due to the decrease of pollution source due to submergence after dam construction and temporary storage during rainfall. There would be no major water quality issues such as the eutrophication in the reservoir since the dam would impound the floodwater for a short time (2~3 days). In the environmental impact assessment stage of a planned dam, there may be some limitations to the exact simulation because the model can not be sufficiently calibrated. However, if the reliability of the model is improved through the acquisition of actual data in the future, it will be possible to examine the influence of the water environment according to various operating conditions in the environmental impact assessment of the new flood control dam.

Accurate Camera Calibration Method for Multiview Stereoscopic Image Acquisition (다중 입체 영상 획득을 위한 정밀 카메라 캘리브레이션 기법)

  • Kim, Jung Hee;Yun, Yeohun;Kim, Junsu;Yun, Kugjin;Cheong, Won-Sik;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.919-927
    • /
    • 2019
  • In this paper, we propose an accurate camera calibration method for acquiring multiview stereoscopic images. Generally, camera calibration is performed by using checkerboard structured patterns. The checkerboard pattern simplifies feature point extraction process and utilizes previously recognized lattice structure, which results in the accurate estimation of relations between the point on 2-dimensional image and the point on 3-dimensional space. Since estimation accuracy of camera parameters is dependent on feature matching, accurate detection of checkerboard corner is crucial. Therefore, in this paper, we propose the method that performs accurate camera calibration method through accurate detection of checkerboard corners. Proposed method detects checkerboard corner candidates by utilizing 1-dimensional gaussian filters with succeeding corner refinement process to remove outliers from corner candidates and accurately detect checkerboard corners in sub-pixel unit. In order to verify the proposed method, we check reprojection errors and camera location estimation results to confirm camera intrinsic parameters and extrinsic parameters estimation accuracy.

Face Recognition Based on Facial Landmark Feature Descriptor in Unconstrained Environments (비제약적 환경에서 얼굴 주요위치 특징 서술자 기반의 얼굴인식)

  • Kim, Daeok;Hong, Jongkwang;Byun, Hyeran
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.666-673
    • /
    • 2014
  • This paper proposes a scalable face recognition method for unconstrained face databases, and shows a simple experimental result. Existing face recognition research usually has focused on improving the recognition rate in a constrained environment where illumination, face alignment, facial expression, and background is controlled. Therefore, it cannot be applied in unconstrained face databases. The proposed system is face feature extraction algorithm for unconstrained face recognition. First of all, we extract the area that represent the important features(landmarks) in the face, like the eyes, nose, and mouth. Each landmark is represented by a high-dimensional LBP(Local Binary Pattern) histogram feature vector. The multi-scale LBP histogram vector corresponding to a single landmark, becomes a low-dimensional face feature vector through the feature reduction process, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis). We use the Rank acquisition method and Precision at k(p@k) performance verification method for verifying the face recognition performance of the low-dimensional face feature by the proposed algorithm. To generate the experimental results of face recognition we used the FERET, LFW and PubFig83 database. The face recognition system using the proposed algorithm showed a better classification performance over the existing methods.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.

One Boundary Diffusion Model Analysis on Distributions of Eye Fixation Durations in Reading; Eye Movement Tracking Study (우리글 읽기에서 나타난 성인과 청소년의 고정시간 분포분석과 단일경계 확산모형 제안)

  • Choo, Hyeree;Koh, Sungryong
    • Korean Journal of Cognitive Science
    • /
    • v.32 no.1
    • /
    • pp.1-53
    • /
    • 2021
  • The aim of this study was to analyze word frequency effects on eye fixation duration in Korean reading with a one-boundary diffusion model and to show how these phenomena differ between adults (20-28yrs) and adolescents (13-14yrs). We predicted that the drift rate parameter in the boundary diffusion model would reflect the information processing of the fovea during silent reading. Through an eye movement tracking experiment while controlling word properties such as the word frequency and the age of acquisition, Experiment 1 and Experiment 2 show that the information processing pertaining to words to be placed in the fovea is connected to the drift rate of the one-boundary diffusion model parameters. In Experiment 1,in the adult group, the mean difference in the fixation time in the response proportion between the presence of high-frequency condition and low-frequency condition in the adult group was higher in quantile 0.9 than it was in the 0.1 quantile, but in the adolescent group, the mean difference in the fixation time in the response proportion between the two conditions was not significantly in the 0.9 quartile.In Experiment 2, the mean difference in the fixation time in the response proportion between early-acquired condition and late-acquired condition in both groups was also higher in the quantile 0.9 than in the 0.1 quantile. The distribution of the two conditions in the both groups was positively skewed, and the difference showed the same pattern found in the results of Ratcliff(Ratcliff & McKoon, 2008). Based on the experimental results, we propose one-boundary diffusion model as a tool to explain word property effects and individual differences in reading. In particular, we suggest that the drift rate parameter in the boundary diffusion model reflects the information processing of the fovea during reading. In addition, the results show that one-boundary diffusion model can be used to predict the aforementioned phenomena in reading.

Development of Artificial Pulmonary Nodule for Evaluation of Motion on Diagnostic Imaging and Radiotherapy (움직임 기반 진단 및 치료 평가를 위한 인공폐결절 개발)

  • Woo, Sang-Keun;Park, Nohwon;Park, Seungwoo;Yu, Jung Woo;Han, Suchul;Lee, Seungjun;Kim, Kyeong Min;Kang, Joo Hyun;Ji, Young Hoon;Eom, Kidong
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • Previous studies about effect of respiratory motion on diagnostic imaging and radiation therapy have been performed by monitoring external motions but these can not reflect internal organ motion well. The aim of this study was to develope the artificial pulmonary nodule able to perform non-invasive implantation to dogs in the thorax and to evaluate applicability of the model to respiratory motion studies on PET image acquisition and radiation delivery by phantom studies. Artificial pulmonary nodule was developed on the basis of 8 Fr disposable gastric feeding tube. Four anesthetized dogs underwent implantation of the models via trachea and implanted locations of the models were confirmed by fluoroscopic images. Artificial pulmonary nodule models for PET injected $^{18}F$-FDG and mounted on the respiratory motion phantom. PET images of those acquired under static, 10-rpm- and 15-rpm-longitudinal round motion status. Artificial pulmonary nodule models for radiation delivery inserted glass dosemeter and mounted on the respiratory motion phantom. Radiation delivery was performed at 1 Gy under static, 10-rpm- and 15-rpm-longitudinal round motion status. Fluoroscpic images showed that all models implanted in the proximal caudal bronchiole and location of models changed as respiratory cycle. Artificial pulmonary nodule model showed motion artifact as respiratory motion on PET images. SNR of respiratory gated images was 7.21. which was decreased when compared with that of reference images 10.15. However, counts of respiratory images on profiles showed similar pattern with those of reference images when compared with those of static images, and it is assured that reconstruction of images using by respiratory gating improved image quality. Delivery dose to glass dosemeter inserted in the models were same under static and 10-rpm-longitudinal motion status with 0.91 Gy, but dose delivered under 15-rpm-longitudinal motion status was decreased with 0.90 Gy. Mild decrease of delivered radiation dose confirmed by electrometer. The model implanted in the proximal caudal bronchiole with high feasibility and reflected pulmonary internal motion on fluoroscopic images. Motion artifact could show on PET images and respiratory motion resulted in mild blurring during radiation delivery. So, the artificial pulmonary nodule model will be useful tools for study about evaluation of motion on diagnostic imaging and radiation therapy using laboratory animals.

A Proposed Algorithm and Sampling Conditions for Nonlinear Analysis of EEG (뇌파의 비선형 분석을 위한 신호추출조건 및 계산 알고리즘)

  • Shin, Chul-Jin;Lee, Kwang-Ho;Choi, Sung-Ku;Yoon, In-Young
    • Sleep Medicine and Psychophysiology
    • /
    • v.6 no.1
    • /
    • pp.52-60
    • /
    • 1999
  • Objectives: With the object of finding the appropriate conditions and algorithms for dimensional analysis of human EEG, we calculated correlation dimensions in the various condition of sampling rate and data aquisition time and improved the computation algorithm by taking advantage of bit operation instead of log operation. Methods: EEG signals from 13 scalp lead of a man were digitized with A-D converter under the condition of 12 bit resolution and 1000 Hertz of sampling rate during 32 seconds. From the original data, we made 15 time series data which have different sampling rate of 62.5, 125, 250, 500, 1000 hertz and data acqusition time of 10, 20, 30 second, respectively. New algorithm to shorten the calculation time using bit operation and the Least Trimmed Squares(LTS) estimator to get the optimal slope was applied to these data. Results: The values of the correlation dimension showed the increasing pattern as the data acquisition time becomes longer. The data with sampling rate of 62.5 Hz showed the highest value of correlation dimension regardless of sampling time but the correlation dimension at other sampling rates revealed similar values. The computation with bit operation instead of log operation had a statistically significant effect of shortening of calculation time and LTS method estimated more stably the slope of correlation dimension than the Least Squares estimator. Conclusion: The bit operation and LTS methods were successfully utilized to time-saving and efficient calculation of correlation dimension. In addition, time series of 20-sec length with sampling rate of 125 Hz was adequate to estimate the dimensional complexity of human EEG.

  • PDF

Research on The Utility of Acquisition of Oblique Views of Bilateral Orbit During the Dacryoscintigraphy (눈물길 조영검사 시 양측 안 와 사위 상 획득의 유용성에 대한 연구)

  • Park, Jwa-Woo;Lee, Bum-Hee;Park, Seung-Hwan;Park, Su-Young;Jung, Chan-Wook;Ryu, Hyung-Gi;Kim, Ho-Shin
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.76-81
    • /
    • 2014
  • Purpose: Diversity and the lachrymal duct deformities and the passage inside the nasal cavity except for anterior image such as epiphora happens during the test were able to express more precisely during the dacryoscintigraphy. Also, we thought about the necessity of a method to classify the passage into the naso-lachrymal duct from epiphora. Therefore, we are to find the validity of the method to obtain both oblique views except for anterior views. Materials and Methods: The targets of this research are 78 patients with epiphora due to the blockage at the lachrymal duct from January 2013 to August 2013. Average age was $56.96{\pm}13.36$. By using a micropipette, we dropped 1-2 drops of $^{99m}TcO4^-$ of 3.7 MBq (0.1 mCi) with $10{\mu}L$ of each drop into the inferior conjunctival fold, then we performed dynamic check for 20 minutes with 20 frames of each minute. In case of we checked the passage from both eyes to nasal cavity immediately after the dynamic check, we obtained oblique view immediately. If we didn't see the passage in either side of the orbit, we obtained oblique views of the orbit after checking the frontal film in 40 minutes. The instrument we used was Pin-hole Collimator with Gamma Camera(Siemens Orbiter, Hoffman Estates, IL, USA). Results: Among the 78 patients with dacryoscintigraphy, 35 patients were confirmed with passage into the nasal cavity from the anterior view. Among those 35 patients, 15 patients were confirmed with passage into the nasal cavity on both eyes, and it was able to observe better passage patterns through oblique view with a result of 8 on both eyes, 2 on left eye, and 1 on right eye. 20 patients had passage in left eye or right eye, among those patients 10 patients showed clear passage compared to the anterior view. 13 patients had possible passage, and 30 patients had no proof of motion of the tracer. To sum up, 21 patients (60%) among 35 patients showed clear pattern of passage with additional oblique views compared to anterior view. People responded obtaining oblique views though 5 points scale about the utility of passage identification helps make diagnoses the passage, passage delayed, and blockage of naso-lachrymal duct by showing the well-seen portions from anterior view. Also, when classifying passage to naso-lachrymal duct and flow to the skin, oblique views has higher chance of classification in case of epiphora (anterior:$4.14{\pm}0.3$, oblique:$4.55{\pm}0.4$). Conclusion: It is considered that if you obtain oblique views of the bilateral orbits in addition to anterior view during the dacryoscintigraphy, the ability of diagnose for reading will become higher because you will be able to see the areas that you could not observe from the anterior view so that you can see if it emitted after the naso-lachrymal duct and the flow of epiphora on the skin.

  • PDF