• Title/Summary/Keyword: acoustic release

Search Result 104, Processing Time 0.023 seconds

Testing and Numerical Analysis on the Fracture Characteristics of Composite Adhesive Bonded Single-Lap Joints (복합재료 Single-Lap 본딩 조인트의 파괴 특성에 대한 실험 및 수치해석 연구)

  • 김광수;박재성;장영순;이영무
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.45-53
    • /
    • 2003
  • The experimental and numerical investigations on the failure characteristics of the secondary bonded composite single-lap joints were performed. The initiations and growths of cracks were observed using CCD camera and acoustic emission sensor during the tension tests of the joint specimens. The structural behaviors of the specimens were predicted by the geometric nonlinear two-dimensional finite element analysis. The three types of observed initial cracks were included in each finite element models and the strain energy release rates of each specimen models were calculated by VCCT(Virtual Crack Closure Technique) technique. The tension tests showed that the initial cracks occurred in the 60∼90% of final failure loads and the major failure modes of the specimens were adhesive failure and the delamination between the 1st and 2nd ply of laminate. The specimens with the thicker bondline had earlier crack initiation loads but higher crack propagation resistance and eventually better loading capability. The delaminations were mostly observed in the thicker bondline specimens. The mode I values of calculated strain energy release rates were higher than the mode II values in the all specimen models considering the three types of initial cracks. The mode I and total strain energy release rates were calculated as higher values in the order of initial crack in the edge interface, comer interface and delamination between the plies of laminate.

Changes in High Degree p-mode Parameters with Magnetic and Flare Activities

  • Maurya, Ram Ajor
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.89.2-89.2
    • /
    • 2013
  • Solar energetic transients, e.g., flares, CMEs, etc., release large amount of energy which is expected to excite acoustic waves (p-modes) by exerting mechanical impulse of the thermal expansion of the flare on the photosphere. We study the p-mode properties of flaring and dormant active regions (ARs) to find association between flare and p-mode parameters. We compute the magnetic and flare activity indices of ARs using the line-of-sight magnetograms and GOES X-ray fluxes, respectively. The p-mode parameters are computed from the ring-diagram analysis. We correct p-mode parameters for magnetic field, filling factors and foreshortening by multiple linear-regression analysis. Our analysis of several flaring and dormant ARs observed during the Carrington rotations 1980-2109, showed strong association of mode parameters with magnetic and flare activities. We find that the mode parameters are contaminated by the geometrical effect. Mode amplitude decreases with angular distance from the solar disc centre. The mode width increases with magnetic activity while amplitude showed opposite relation due to mode absorption by the sunspot. After correcting modes due to all geometrical effects, magnetic activity and filling factor, we find that the modes amplitude, and mode energy increases with flare energy while width shows opposite relation.

  • PDF

An Experimental Study on Feasibility of Actively Tuned Passive Control in a Liquid Ramjet Engine (액체 램제트 엔진에서 Actively Tuned Passive Control 가능성의 실험적 연구)

  • Song, Jae-Cheon;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.107-110
    • /
    • 2009
  • Combustion oscillations are caused by a coupling between acoustic waves and unsteady heat release. They can be eliminated using passive controller such as a helmholtz resonator. But, helmholtz resonator is normally only effective over a narrow frequency range. In this work, helmholtz resonator is applied for reducing the combustion oscillations and we vary the helmholtz resonator volume using piston in oder to tune in the wide range of operating conditions. As the result, it is found that the dominant combustion oscillations can be reduced by optimizing the size of resonator volume. Also, from these results, we investigate feasibility of actively tuned passive control

  • PDF

Effect of the Nasal Cavity Resonance on the Acoustic Characteristics of Korean Vowels (비강 공명이 한국어 모음에 미치는 음향학적 영향)

  • 성명훈;오승하;강명구;고태용;김광현;김진영
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.4 no.1
    • /
    • pp.24-32
    • /
    • 1991
  • Cleft palate or velopharyngeal incompetence shows many disorders and disabilities affecting speech transmission. including distortion. substitution. and the nasalization of the vowels. The nasalized vowels are produced primarily by lowering of the velum. resulting in opening a side passage for the air flow through the nasal cavity. These abnormal movements give rise to complex modification of the physical property of the sound or in the sound spectrum. The authors employed Sonagraph$^{\circledR}$ as a sound analyzer in order to ascertain the features which characterize the nasalization of vowels. Twenty healthy Korean male adult voluteers were analyzed in artificial conditions of anterior and posterior nasal obstruction. and velo-pharyngeal incompetence. The results were as follows : 1) Fundamental frequency was not changed by nasal obstruction or velopharyngeal incompetence. 2) There was no significant difference of the formant intensity between normal and nasal vowels. 3) In VPI, a decrease of the frequency of $F_2$ was observed in /e/ and /i/ vowels(p<0.001). 4) In VPI, the $F_2$ was frequently missed in /o/ and /u/ vowels. 5) In the consonant spectra of VPI, the 'release burst' was usually not observed.

  • PDF

The Effect of Water Compressibility on a Rigid Body Movement in a Water-filled Duct Driven by Compressed Air (압축공기로 움직이는 관 내부 수중 이동물체의 거동에 미치는 물의 압축성 영향)

  • Park, Chan-Wook;Lee, Sung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.345-352
    • /
    • 2008
  • The motion of a projectile initiated by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one. The effects of water compressibility on projectile movements are investigated, comparing results based on the Fluent VOF model where water is treated as an incompressible medium with those from the presently developed VOF scheme. The present model considers compressibility of both air and water. The Fluent results show that the body moves farther and at higher speeds than the present ones. As time proceeds, the relative difference of speed and displacement between the two results drops substantially, after acoustic waves in water traverse and return the full length of the tube several times. To estimate instantaneous accelerations, however, requires implementation of the water compressibility effect as discrepancies between them do not decrease even after several pressure wave cycles.

Numerical Simulation of Self-excited Combustion Oscillation in a Dump Combustor with Bluff-body (둔체를 갖는 연소기에서 자려 연소 진동에 관한 수치해석)

  • Kim, Hyeon-Jun;Hong, Jung-Goo;Kim, Dae-Hee;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.659-668
    • /
    • 2008
  • Combustion instability has been considered as very important issue for developing gas turbine and rocket engine. There is a need for fundamental understanding of combustion instability. In this study, combustion instability was numerically and experimentally investigated in a dump combustor with bluff body. The fuel and air mixture had overall equivalence ratio of 0.9 and was injected toward dump combustor. The pressure oscillation with approximately 256Hz was experimentally obtained. For numerical simulation, the standard k-$\varepsilon$ model was used for turbulence and the hybrid combustion model (eddy dissipation model and kinetically controlled model) was applied. After calculating steady solution, unsteady calculation was performed with forcing small perturbation on initial that solution. Pressure amplitude and frequency measured by pressure sensor is nearly the same as those predicted by numerical simulation. Furthermore, it is clear that a combustion instability involving vortex shedding is affected by acoustic-vortex-combustion interaction. The phase difference between the pressure and velocity is $\pi$/2, and that between the pressure and heat release rate is in excitation range described by Rayleigh, which is obvious that combustion instability for the bluff body combustor meets thermoacoustic instability criterion.

Numerical Analysis for Two-Dimensional Compressible and Two-Phase Flow Fields of Air-Water in Eulerian Grid Framework (2차원 압축공기-물의 압축성 이상 유동 수치 해석)

  • Park, Chan-Wook;Lee, Sung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.429-445
    • /
    • 2008
  • Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of each phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe‘s approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated.

Combustion Instability Analysis Using Network Model in an Annular Gas Turbine Combustor (네트워크 모델을 이용한 환형 가스터빈 연소기에서의 연소불안정 해석)

  • Pyo, Yeongmin;Yoon, Myunggon;Kim, Daesik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.896-904
    • /
    • 2017
  • Lean premixed combustion was successful in meeting current NOx emission regulations. However, these often leads to combustion instability. This phenomena results from the feedback relationship between heat release perturbations and acoustic pressure oscillations in the combustor. Researches on the combustion instability in an annular combustor have recently received great attention due to the enhanced NOx requirement in aero-engines. In this study, the thermoacoustic network model has been developed in order to calculate the acoustics for longitudinal as well as circumferential modes in the annular combustor. The combustion model in the network model is calculated by flame transfer function(FTF). Numerical and analytical results are compared to an measurement data.

  • PDF

Mechanical Behaviors of CFRP Laminate Composites Reinforced with Aluminum Oxide Powder

  • Kwon, Oh-Heon;Yun, Yu-Seong;Ryu, Yeong-Rok
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.166-173
    • /
    • 2014
  • In this study, a laminated composite material with dispersing aluminum oxide powder between the CFRP laminate plies, and also CFRP composites without aluminium oxide powder were fabricated for Mode I experiments using the DCB specimen and a tensile test. The behavior of the crack and the change of the interfacial fracture toughness were evaluated. Also in order to evaluate the damage mechanism for the crack extension, the AE sensor on the surface of the DCB test specimen was attached. AE amplitude was estimated for CFRP-alumina and CFRP composite. And the fracture toughness was evaluated by the stress intensity factor and energy release rate. The results showed that an unstable crack was propagated rapidly in CFRP composite specimen along with the interface, but crack propagation in CFRP-alumina specimen was relatively stable. From results, we show that aluminium oxide powder spreaded uniformly in the interface of the CFRP laminate carried out the role for preventing the sudden crack growth.

Experimental Study on Flame Structure and Temperature Characteristics in a Lean Premixed Model Gas Turbine Combustor

  • Lee Jong Ho;Jeon Chung Hwan;Chang Young June;Park Chul Woong;Hahn Jae Won
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1366-1377
    • /
    • 2005
  • Experimental study was carried out in an atmospheric pressure, laboratory-scale dump combustor showing features of combustion instabilities. Flame structure and heat release rates were obtained from OH emission spectroscopy. Qualitative comparisons were made between line-integrated OH chemiluminescence image and Abel-transformed one. Local Rayleigh index distributions were also examined. Mean temperature, normalized standard deviation and temperature fluctuations were measured by coherent anti-Stokes Raman spectroscopy (CARS). To see the periodic behavior of oscillating flames, phase-resolved measurements were performed with respect to the pressure wave in the combustor. Results on system damping and driving characteristics were provided as a function of equivalence ratio. It also could be observed that phase resolved temperatures have been changed in a well-defined manner, while its difference between maximum and minimum reached up to 280K. These results would be expected to play an important role in better understanding of driving mechanisms and thermo-acoustic interactions.