• Title/Summary/Keyword: acoustic analysis

Search Result 2,488, Processing Time 0.032 seconds

Development of a Bone Conduction Vibrator for Portable Acoustic Device (휴대음성장치용 골도 진동자 개발)

  • Kim, Kwang-Suk;Bang, Ki-Chang;Hwang, Gun-Yong;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.613-617
    • /
    • 2008
  • One of the important parts on multimedia era is acoustic ones. With increased demand of smallest multimedia products such as personal digital assistant (PDA) and mobile phones, it is necessary to develop acoustic devices which have higher performance and smaller size. Acoustic parts with various function for hearing impaired persons. This paper introduces a bone conduction vibrator (BCV) for hearing impaired persons to use portable acoustic device without additional devices. For vibration analysis of the BCV, electromagnetic, mechanical and their coupling effects are considered for the analysis. This paper shows that the development of design and analysis technique by finite element method (FEM) of BCV.

  • PDF

Acoustic Sensors based Fault Diagnosis Algorithm for Large-scaled Power Machines using Neural Independent Component Analysis (신경회로망 독립성분해석을 이용한 음향센서 기반 대전력기기의 고장진단 알고리즘)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.881-888
    • /
    • 2008
  • We present a novel fault diagnosis methodology using acoustic sensor systems and neural independent component analysis for large-scaled power machines. Acoustic sensors are carried out to measure sounds generated from power machines whose signal is used to determine whether fault is occurred or not. Acoustic measurements are independently mixed and deteriorated from original source signals. We propose a demixing algorithm against such mixed signals by means of independent component analysis which is achieved based on information theory and higher-order statistics to derive learning mechanism.

A Study on the Structural-acoustic Analysis Modeling Methods of the Room with Heavy Impact Noise Source (중량충격원 충격에 따른 공동주택 실내공간의 구조음장 해석 모델링방법에 관한 연구)

  • Lee, Jae-Kwang;Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.81-87
    • /
    • 2009
  • The purpose of the present study is to establish structural noise analyzing method for apartments building floor with structural-acoustic coupling analysis modeling. Noise through floor in the room is recognized as a significant problem with the consequence that noise isolation technique has been studied in the various fields of industry. From among noise factors, resonance sound is the main reason for solid noise of the floor, which is occurred by mechanical vibrations of the acoustic boundary line and the change of velocity. To analyse this phenomenon, numerical computation methods are provided in many fields, In this study, evaluation method for slab is established using finite element method, and a case study for analyzing acoustic phenomenon was suggested. The results show that numerical method, especially F.E.M, has a good approximation to predict noise at floors.

Acoustic Noise of Brushless DC Motors Induced by Electromagnetic Torque Ripple

  • Xia, Kun;Li, Zhengrong;Lu, Jing;Dong, Bin;Bi, Chao
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.963-971
    • /
    • 2017
  • Torque ripple is one of the major sources inducing vibration and noise in brushless DC motors. This is especially true in applications such as the spindle motors used in hard disk drives. However, the relationship between torque ripple and acoustic noise/vibration is quite complicated. This paper presents a way to investigate this relationship with acoustic noise measurement and analysis. Results obtained with three different drive modes are used in the analysis. The results show that the acoustic noise analysis is very helpful in designing a high-performance drive strategy for BLDC motors.

The Acoustic Analysis of the Diphthongs in Jeju Dialect (제주방언 이중모음의 음향분석)

  • Kim, Won-Bo
    • Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.29-41
    • /
    • 2005
  • This paper is to show the diphthong system of Jeju dialect speakers in their 70s or more on the basis of the acoustic analysis of their phonetic data. It is revealed through the analysis of their phonetic data that they clearly distinguish such diphthongs as [we], [w$\epsilon$], [yc] and [yo]. However, this paper shows that they are phonetically insensitive to the separation between [ye] and [y$\epsilon$] and they seldom make a precise pronunciation of diphthong [iy], which male speakers tend to pronounce to be [i] and female speakers to be [i].

  • PDF

The Analysis of Transmission Characteristics of Closed Structure with Internal Source Using FEM/BEM (유한.경계요소법을 이용한 내부음원을 갖는 닫힌 구조물의 차음 특성 해석)

  • Won, Sung-Gyu;Jung, Weui-Bong;Seo, Yeung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.318-321
    • /
    • 2005
  • In vibro-acoustic analysis, the commercial CAE tools, such as SYSNOISE, is usually used to take into account of the coupled effects of fluid acoustics and structural vibration. The acoustic field can be solved by either FEM or BEM, while the vibration field is usually solved by FEM. The interior or exterior acoustic problems with the coupled effects of the structural boundary could be solved by the commercial tools. The commercial tools, however, could not solve the problems in case that both the interior and exterior acoustic field is coupled with the structural boundary. In this paper, a realistic method based on FEM/BEM coupling scheme is presented to analyze the acoustic radiation from the internal source in a chamber to external acoustic field through elastic structural boundary. Several numerical examples are implemented to validate the developed program.

  • PDF

A Study on the Enhancement of Phase Change Heat Transfer in Acoustic Fields (음향장 내의 상변화 열전달 촉진에 관한 연구)

  • 양호동;나기대;오율권
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.152-160
    • /
    • 2004
  • The present study investigates on the experimental and numerical results of heat transfer in the acoustic fields induced by ultrasonic waves. The strong upwards flow which moves from the bottom surface in a cavity to the free surface called as "acoustic streaming" was visualized by a particle image velocimetry (PIV). In addition, the augmentation ratio of heat transfer was experimentally investigated in the presence of acoustic streaming and was compared with the profiles of acoustic pressure calculated by the numerical analysis. A coupled finite element-boundary element method (FE-BEM) was applied for a numerical analysis. The results of experimental and numerical studies clearly show that acoustic pressure variations caused by ultrasonic waves in a medium are closely related to the augmentation of heat transfer.

Acoustic and Flow-filed Analysis of Suction Muffler in Compressor (압축기용 흡입머플러의 음향 및 유동해석)

  • 주재만;이학준;오상경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1162-1167
    • /
    • 2001
  • Suction valve fluttering is generated by reciprocating motions of the piston inhaling and discharging process of gas in the hermetic compressor. A reactive type suction muffler, which produces high pressure-drop because of its complicated flow path, controls the impulsive noise radiated from the flutter of suction valve. The high-pressure drop in the muffler increases the transmission loss, but reduces the EER(Energy Efficiency Ratio) of the compressor. We consider how to design the high acoustic attenuation and low pressure-drop performance to take account of the acoustic and flow performances of the suction muffler. In this study, we identified the suction noise source of compressor from the measurement of the acoustic pulsation and flutter of suction valve. We analyzed the acoustic characteristics of muffler using the finite element method, and compared the experimental and analytical characteristics of flow path of suction muffler. Theoretical predictions and experimental results are compared from the viewpoint of the acoustic performance and energy efficiency of the compressor.

  • PDF

An Aerodynamic and Acoustic Analysis of the Breathy Voice of Thyroidectomy Patients (갑상선 수술 후 성대마비 환자의 기식 음성에 대한 공기역학적 및 음향적 분석)

  • Kang, Young-Ae;Yoon, Kyu-Chul;Kim, Jae-Ock
    • Phonetics and Speech Sciences
    • /
    • v.4 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • Thyroidectomy patients may have vocal paralysis or paresis, resulting in a breathy voice. The aim of this study was to investigate the aerodynamic and acoustic characteristics of a breathy voice in thyroidectomy patients. Thirty-five subjects who have vocal paralysis after thyroidectomy participated in this study. According to perceptual judgements by three speech pathologists and one phonetic scholar, subjects were divided into two groups: breathy voice group (n = 21) and non-breathy voice group (n = 14). Aerodynamic analysis was conducted by three tasks (Voicing Efficiency, Maximum Sustained Phonation, Vital Capacity) and acoustic analysis was measured during Maximum Sustained Phonation task. The breathy voice group had significantly higher subglottal pressure and more pathological voice characteristics than the non breathy voice group. Showing 94.1% classification accuracy in result logistic regression of aerodynamic analysis, the predictor parameters for breathiness were maximum sound pressure level, sound pressure level range, phonation time of Maximum Sustained Phonation task and Pitch range, peak air pressure, and mean peak air pressure of Voicing Efficiency task. Classification accuracy of acoustic logistic regression was 88.6%, and five frequency perturbation parameters were shown as predictors. Vocal paralysis creates air turbulence at the glottis. It fluctuates frequency-related parameters and increases aspiration in high frequency areas. These changes determine perceptual breathiness.

Acoustic resonance by Inserting Anti-noise Baffle in the Tube Bank of Boiler of a Large Fossil Power Plant (대형석탄화력발전용 보일러 관군의 Anti-Noise Baffle 설치에 따른 음향공진)

  • Bang, Kyung-Bo;Kim, Cheol-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.178-183
    • /
    • 2004
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a large fossil power plant. The phenomena of acoustic resonance may arise when the vortex shedding frequency coincides with the acoustic natural frequency. In this system dominant frequency of vibration and noise was 37.5Hz. The $3^{rd}$ acoustic natural frequency calculated was 37.2 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance could occur. If system is the state of acoustic resonance, vibration and noise become large. In order to prevent acoustic resonance, anti-noise baffle should be installed in the tube bank. In the case of installing baffle, we should consider the number of baffle and the effect of acoustic mode due to baffle extension length. To do this, we did acoustic mode analysis. After installing anti-noise baffle, acoustic resonance was disappeared and vibration magnitude and noise level was reduced dramatically.

  • PDF