Stability of soybean isoflavone isomers according to extraction conditions such as temperature, pH, and extracting solvents was investigated. Heating induced three chemical reactions to occur for malony1 derivatives of isoflavones, namely decarboxylation of malony1 groups into acety1 derivatives, deesterification of malony1 residues, and hydrolysis of $\beta$-glycosidic bonds. Among the twelve isoflavone isomers, change in concentrations of acety1glycosides were most pronounced: Acety1 derivatives were present only in trace amounts in unheated hypocotyls, but the content increased dramatically during heating. As for the glycosides, concentrations of daidzin and glycitin increased due to heat treatment, though that of genistin remained almost unchanged. Heat decomposition rates and the patterns differed among the three malony1 derivatives. After 120 min at $80^{circ}C$, the relative concentrations of daidzin, glycitin and genistin were increased from $9.2\%$, $12.4\%$ and $3.3\%$ to $19.3\%$, $21.9\%$ and $6.2\%$, respectively. When crude isoflavones were solubilized in glycine buffer (pH 10.0) and incubated at $80^{circ}C$, deesterification occurred faster than at pH 7.0. When the pH of isoflavone solution was increased, the malony1glycosides were hydrolyzed to their respective glycosides at increased rate. Both acetyl and aglycone forms were unchanged and only de-esterification reactions occurred. At the acidic pH, malonylglycosides were much stable both at 60 and $80^{circ}C$. However at pH 10, $80^{circ}C$ and 1 hr, $75-80\%$ of malonylglycosides were transformed to their deesterified glycosides. When isoflavones were extracted with $60\%$ aqueous ethanol at $60^{circ}C$, isoflavone isomers were stable and the deesterification reactions did not occur in these conditions. However, at $80^{circ}C$ deesterification of malonyiglycosides occurred significantly with $15-20\%$ of malonylglycosides being hydrolyzed into their respective glycosides. This experiment showed that malonylglycosides undergo decomposition when heated or exposed to alkaline conditions. Also, aqueous ethanol was preferred to aqueous methanol as solubilizing media for obtaining extract with minimum degradation of malonylglycosides.
The soil pH favored by several native plants in Korea ranges 5.33∼7.20, while a more acidic range of pH 3.95∼6.10 is acceptable to exotic plants. Ethanol extracts of native and exotic plants in Korea were investigated for antimicrobial activity against Bacillus sphiaericus 2362, Bacillus thuringiensis var. subtilis and Bacillus thuringiensis var. cereus and Actinomycetes. Higher antimicrobial activity was observed from the extract of exotic plants than those of native plants. The ethanol extract of Ambrosia artemisiifolia var. elatior was observed to have the highest antimicrobial activity against 4 species of soil microbes. Especially, antimicrobial activity of Ambrosia artemisiifolia var. elatior showed the largest clear zone of 48mm in Actinomycetes. Larger clear zone was formed in the order of caffeic acid, benzoic acid and ρ -coumaric acid among the nine chemical compounds. Accordingly, the antimicrobial activity of Ambrosia artemisiifolia var elatior against Actinomycetes was found to be due to the synergetic effect of chemical compounds.
Fe(III)-impregnated activated carbon (Fe-AC) was applied in the treatment of synthetic wastewater containing Cu(II). To investigate the stability of Fe-AC at acidic condition, dissolution of Fe was studied with a variation of solution pH ranging from 2 to 4. Fe-AC was unstable at pH 2, showing a gradual increase of the dissoluted Fe as reaction time increased, while negligible amount of Fe was dissoluted above pH 3. This stability test suggests the applicability of Fe-AC in the treatment of wastewater above pH 3. Adsorption capacity of Cu(II) onto activated carbon (AC) and Fe-AC was investigated in a batch and a column test. In the adsorption kinetics, rapid adsorption of Cu(II) onto AC and Fe-AC was noted at initial reaction time and then reached a near complete equilibrium after 6 hrs. Adsorption trends of Cu(II) onto AC and Fe-AC were similar, showing an increased Cu(II) adsorption at higher pH. Compared with AC, Fe-AC showed a greater Cu(II) adsorption over the entire pH range studied in this research. From the adsorption isotherm obtained with variation of the concentration of Cu(II), the maximum adsorption capacity was identified as 61,700 mg/kg.
The measurement of physicochemical properties and chemical composition of SSA(sewage sludge ash) has been carried out and the preparation of lightweight material has also been performed using SSA for reuse as building or construction materials. For this aim, lightweight material has been prepared by forming the mixture of SSA, lightweight filler and inorganic binder followed by calcination at elevated temperature and characterized in terms of density and compressive strength. The pH of fly ash was found to be slightly alkaline, pH 8.69, due to the addition of caustic soda in order to neutralize the acidic gas while the pH of bottom ash was 6.48 Heavy metal leachability based on the standard leach test was also found to be below the detection limit for Cd, Cu, Pb, As and Cr of SSA. As far as the compressive strength of lightweight material was concerned, the compressive strength of lightweight material using fly ash was higher than that of lightweight material using bottom ash.
The Influence of temperature on the recovery reaction of silver in aqueous solution was investigated based on Pourbaix diagram constructed by thermodynamic calculation at different temperatures. It was observed that the stability of water is more strongly affected by pH variation and the stable region of ${Ag^+}_{(aq)}$ is diminished at higher temperature. It was shown that the recovery of $Ag_{(aq)}$ in the forms of $Ag_{(s)}$ and $Ag_2O_{3(s)}$ is more advantageous thermodynamically at lower temperature, however, the recovery of $Ag_{(aq)}$ in the forms of $Ag_2O_{(s)}$ 및 $Ag_2O_{2(s)}$ is more advantageous as temperature increases. The rise of temperature is considered to demote the recovery of silver thermodynamically in strong acidic condition ($pH{\leq}2$), but more silver is regarded to be recovered with temperature above pH 2. Finally, The recovery of silver in the elemental state is shown to be more sensitively influenced by temperature variation compared with the recovery of silver in its oxide form.
In this study, we examined the effects of carrier oil type (MCT oil: MO, corn oil: CO, palm oil: PO), pH of dispersion solution, and antioxidants on the chemical degradation of ${\beta}$-carotene in oil-in-water nanoemulsions. The pH of the emulsion had a significant influence on the stability of ${\beta}$-carotene, which showed rapid degradation in emulsions at low pH value and relatively higher stability at high pH values. The influence of the carrier oil type on ${\beta}$-carotene stability was assessed. The rate of ${\beta}$-carotene degradation increased in the following order: CO > PO > MO. The effect of antioxidants on ${\beta}$-carotene degradation was monitored during storage at $25^{\circ}C$ for 4 weeks. The rate of ${\beta}$-carotene degradation decreased upon addition of water-soluble (ascorbic acid) or oil-soluble (tocopherol) antioxidants. In general, tocopherol was more effective than ascorbic acid in reducing ${\beta}$-carotene degradation. To utilize this nanoemulsion for producing acidic beverages, adding a higher concentration of antioxidants is required.
A literature review is made on the physical and chemical characteristics of clay minerals in acidic solutions from the mineralogical and hydrometallurgical viewpoints. Some of the important characteristics of clays are their ability to cation exchange, swelling, and incongruent dissolution in acidic solutions. Various clay minerals can take up metallic ions from solution via cation exchange mechanism. Generally, cation exchange capacity increases in the following order : kaolinite, halloysite, illite, vermiculite, and montmorillonite. In acidic solutions, the cation uptake such as copper by clay minerals is strongly inhibited by hydrogen and aluminum ions and thus is not economically significant factor for recovery of metals such as uranium and copper. In acidic solutions, the cation uptake is substial. Swelling is minimal at lower pH, possibly due to lattice collapse. Swelling may be controllable with montmorillonite type clays by exchanging interlayer sodium with lithium and/or hydroxylated aluminum species. The effect of add on clay minerals are : 1. Division of aggregates into smaller plates with increase in surface area and porosity. 2. Clay-acid reactions occur in the following order: (i) $H^+$ replacement of interlayer cations, (ii) removal of octahedral cations, such as Al, Fe, and Mg, and (iii) removal of tetrahedral Al ions. Acid attack initiates, around the edges of the clay particles and continued inward, leaving hydrated silica gel residue around the edges. 3. Reaction rates of (ii) and (iii) are pseudo-1st order and proportional to acid concentration. Rate doubles for every temperature increment of $10^{\circ}C$. Implications in in-situ leaching of copper or uranium with acid are : 1. Over the life span of the operation for a year or more, clays attacked by acid will leave silica gel. If such gel covers the surface of valuable mineral surfaces being leached, recovery could be substantially delayed. 2. For a copper deposit containing 0.5% each of clay minerals and recoverable copper, the added cost due to clay-acid reaction is about 1.5c/lb of copper (or 0.93 lbs of $H_2SO_4/1b$ of copper). This acid consumption by clay may be a factor for economic evaluation of in-situ leaching of an oxide copper deposit.
Effects of hemoglobin (Hgb) concentration and degree of hydrolysis (DH) of Hgb on the separation of heme-iron were examined to produce highly enriched heme-iron from Hgb hydrolysate. Separation efficiency of Hgb hydrolysate with different DH was studied at wide pH range (pH $1.0{\sim}11.0$). Separation efficiency expressed as heme-iron/peptide ratio increased with decreasing Hgb concentration. When 5% Hgb (pH 10.0) was hydrolyzed using commercially available Esperase for 5 h at $50^{\circ}C$, DH was 25%. The precipitation of heme-iron-enriched peptides were remarkably high at pH range $3{\sim}6$. Optimal pH range for heme-iron with high heme-iron/peptide ratio shifted to acidic pH with increasing DHs of Hgb. The enriched heme-iron fraction in the precipitates showed a single band through urea-SDS-PAGE, with a molecular mass of 1 kDa. In the dry heme-iron product produced in a pilot bioreactor, content of heme-iron and heme-iron/peptide ratio were 27.1 and 38.7%, respectively, and production yield was 9.3%.
In this study, Fe(VI) was employed as a multi-functional agent to treat the simulated industrial wastewater contaminated with Cu(II)-EDTA through oxidation of EDTA, decomplexation of Cu(II)-EDTA and subsequent removal of free copper through precipitation. The decomplexation of $10^{-4}\;M$ Cu(II)-EDTA species was performed as a function of pH at excess concentration of Fe(VI). It was noted that the acidic conditions favor the decomplexation of Cu(II)-EDTA as the decomplxation was almost 100% up to pH 6.5, while it was only 35% at pH 9.9. The enhanced degradation of Cu(II)-EDTA with decreasing the pH could be explained by the different speciation of Fe(VI). $HFeO_4^-$ and $H_2FeO_4$, which are relatively more reactive than the unprotonated species $FeO_4^{2-}$, are predominant species below neutral pH. It was noted that the decomplexation reaction is extremely fast and within 5 to10 min of contact, 100% of Cu(II)-EDTA was decomplexed at pH 4.0. However, at higher pH (i.e., pH 10.0) the decomplexation process was relatively slow and it was observed that even after 180 min of contact, maximum ca 37% of Cu(II)-EDTA was decomplexed. In order to discuss the kinetics of the decomplexation of Cu(II)-EDTA, the data was slightly fitted better for the second order rate reaction than the first order rate reaction in the excess of Fe(VI) concentration. On the other hand, the removal efficiency of free Cu(II) ions was also obtained at pH 4.0 and 10.0. It was probably removed through adsorption/coagulation with the reduced iron i.e., Fe(III). The removal of total Cu(II) was rapid at pH 4.0 whereas, it was slow at pH 10.0. Although the decomplexation was 100% at lower pH, the removal of free Cu(II) was relatively slow. This result may be explicable due to the reason that at lower pH values the adsorption/coagulation capacity of Fe(III) is greatly retarded. On the other hand, at higher pH values the decomplexation of Cu(II)-EDTA was partial, hence, slower Cu(II) removal was occurred.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.1
/
pp.739-744
/
2020
This study evaluates the erosive potential and effects of mixed alcohols by analyzing the pH, titratable acidity, and fluorescence loss degree (△F). Following alcohol groups were investigated: Soju, Calamansi+soju, Yakult+soju, Cola+soju, and Energy drink+soju. The ratio of soju:beverage in the alcohol mixtures was 7:3. Ed. Notes: The sentence lacks clarity. Please review if the edit correctly portrays the meaning. If not, please revise appropriately. Measurement of the pH and titratable acidity (the amount of 1M NaoH solution required to raise to pH 5.5 (TA5.5) and 7.0 (TA7.0)) of alcohols was achieved by stirring with pH meter. The erosive effect of the alcohol mixtures on bovine tooth (△F) after 1, 2, 4, and 6 hours exposure were analyzed by quantitative light-induced fluorescence (QLF-D). All the mixed alcohols in this study showed an acidic pH, lower than 4.5. The average pH of mixed alcohols was 3.17 ± 0.50 whereas the pH of Soju was 8.6 ± 0.01. The TA5.5 and TA7.0 values of the mixed alcohols were 0.5~18 and 0.5~23.5, respectively. △F of the three tested mixed alcohol groups (except yakult+soju group) were observed to increase in a time-dependent manner. The calamansi mixed alcohol had the highest acidity potential and erosive effect among the tested groups. Taken together, the results indicate that the mixed alcohols have a strong erosive effect and potential on dental enamel.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.