DOI QR코드

DOI QR Code

Pourbaix Diagram에 의거한 은(銀)의 회수반응(回收反應)에 미치는 온도영향(溫度影響)

The Influence of Temperature on the Recovery Reaction of Silver Based on the Pourbaix Diagram

  • 원유라 (이화여자대학교 환경공학과) ;
  • 김동수 (이화여자대학교 환경공학과)
  • Won, Yu-Ra (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Dong-Su (Department of Environmental Science and Engineering, Ewha Womans University)
  • 투고 : 2012.08.10
  • 심사 : 2012.10.23
  • 발행 : 2012.12.31

초록

온도에 따른 Pourbaix Diagram 을 열역학 계산에 의해 구성하여 수용액 상 은의 회수반응에 미치는 온도의 영향을 파악하였다. 온도의 상승에 따라 물의 안정성은 pH 변화에 대해 더 크게 영향을 받으며 ${Ag^+}_{(aq)}$의 안정영역은 감소하는 것으로 나타났다. 온도가 하강함에 따라 $Ag_{(aq)}$$Ag_{(s)}$$Ag_2O_{3(s)}$ 형태로 회수하고 온도 상승 시에는 $Ag_{(aq)}$$Ag_2O_{(s)}$$Ag_2O_{2(s)}$의 형태로 회수하는 것이 화학반응상 보다 유리할 것으로 고찰되었다. $pH{\leq}2$ 이하의 강산성 영역에서는 온도 상승에 따른 은 회수 효율성이 감소하고 pH가 2 이상인 조건에서는 온도 증가에 따라 은의 회수 효율성이 증대될 것으로 파악되었다. 또한, 은을 원소 상태로 회수하는 방안은 산화은 형태로 회수하는 방안에 비해 온도변화에 대해 더욱 민감하게 영향을 받는 것으로 고려되었다.

The Influence of temperature on the recovery reaction of silver in aqueous solution was investigated based on Pourbaix diagram constructed by thermodynamic calculation at different temperatures. It was observed that the stability of water is more strongly affected by pH variation and the stable region of ${Ag^+}_{(aq)}$ is diminished at higher temperature. It was shown that the recovery of $Ag_{(aq)}$ in the forms of $Ag_{(s)}$ and $Ag_2O_{3(s)}$ is more advantageous thermodynamically at lower temperature, however, the recovery of $Ag_{(aq)}$ in the forms of $Ag_2O_{(s)}$$Ag_2O_{2(s)}$ is more advantageous as temperature increases. The rise of temperature is considered to demote the recovery of silver thermodynamically in strong acidic condition ($pH{\leq}2$), but more silver is regarded to be recovered with temperature above pH 2. Finally, The recovery of silver in the elemental state is shown to be more sensitively influenced by temperature variation compared with the recovery of silver in its oxide form.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Xie, J.Z., Chang, H.L., and Kilbane, J.J., 1996: Removal and recovery of metal, ions from wastewater using biosorbents and chemically modified biosorbents, Biotechnology resource, 57, pp. 127-136.
  2. Kwon, E.H., Jang, S.H., Han, J.W., Jung, J.K., and Lee, J.C., 2004: Effect of slag viscosity on recycling of metal component, Journal of the Korean institute of resources recycling, pp. 82-86.
  3. Zou, H.S., Chu, Z.Q., and Lin, G., 2007: A novel recovery technology of trace precious metals from waste water by combining agglomeration and adsorption, Trans. Nonferrous Met. Soc. China, 17, pp. 858-863. https://doi.org/10.1016/S1003-6326(07)60188-5
  4. Hasegawa, H., et al., 2011: Recovery of toxic metal ions from washing effluent containing excess aminopolycarboxylate chelant in solution, Water research, 45, pp.4844- 4854. https://doi.org/10.1016/j.watres.2011.06.036
  5. Tuncuk, A., et al., 2012: Aqeous metal recovery techniques from e-scrap : Hydrometallurgy in recycling, Mineral Engineering, 25, pp.28-37. https://doi.org/10.1016/j.mineng.2011.09.019
  6. Paul, C.J. and Lim L.L., 2005: Recovery of precious metals by an electrochemical deposition method, Chemosphere, 60, pp.1384-1392. https://doi.org/10.1016/j.chemosphere.2005.02.001
  7. Choi, C. and Cui, Y., 2011: Recovery of silver from wastewater coupled with power generation using a microbial fuel cell, Bioresource Technology, 107, pp.522-525.
  8. Park S.D., et al., 2003: Etch characteristics of silver by inductively coupled flouring-based plasmas, Thin Solid Film, 445, pp.138-143. https://doi.org/10.1016/S0040-6090(03)01193-3
  9. Greenwood, N.N. and Earnshaw, A., 1984: Chemistry of the Elements, Pergamon Press, UK.
  10. eljka, J., et al., 2012: Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by g-irradiation, Radiation Physics and Chemistry, 81, pp.1720-1728. https://doi.org/10.1016/j.radphyschem.2012.05.019
  11. Blaser, S.A., et al., 2008: Estimation of cumulative aquatic exposure and risk due to silver : Contribution of nanofuntionalized plastics and textiles, Science of the Total Environment, 390, pp.396-409. https://doi.org/10.1016/j.scitotenv.2007.10.010
  12. Rathnayake, W.G.I.U., et al., 2012: Synthesis and characterization of nano silver based natural rubber latex foam for imparting antibacterial and anti-fungal properties, Polymer Testing, 31, pp.586-592. https://doi.org/10.1016/j.polymertesting.2012.01.010
  13. Zourboulis A.I., 1995: Silver recovery from aqueous streams using ion flotation, Mineral Engineering, 8(12), pp.1477-1488. https://doi.org/10.1016/0892-6875(95)00112-3
  14. Tao J., et al., 2003: Simultaneous leaching of manganese and silver from manganese-silver ores at room temperature, Hydrometallurgy, 69, pp.177-186. https://doi.org/10.1016/S0304-386X(03)00033-1
  15. Chen W.T., et al., 2012: Silver recovery and chemical oxygen demand (COD) removal from waste fixed solutions, Applied Energy, in press.
  16. Reyes-Cruz, V., Gonzlez, I., and Oropeza, M.T., 2004: Electro-recovery of gold and silver from a cyanide leaching solution using a three-dimensional reactor, Electrochemica Acta, 49, pp.4417-4423 https://doi.org/10.1016/j.electacta.2004.03.046
  17. Azoulay, I., Remazeilles, C., and Refait, P., 2012: Determination of standard Gibbs free energy of formation of chukanovite and Pourbaix diagrams of iron in carbonated media, Corrosion Science, 58, pp.229-236. https://doi.org/10.1016/j.corsci.2012.01.033
  18. CRC, 2008: CRC handbook of chemistry and physics, 89th edition, D.R. Lide et al.(eds.). CRC press, USA.
  19. Atkins, P. and Paula, J.D., 2010: Physical chmestry, ninth edition, Oxford University Press, UK.
  20. Dimeska, R., et al., 2006: Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials, Polymer, 47, pp.4520-4530. https://doi.org/10.1016/j.polymer.2006.03.112
  21. Aktas S., 2010: Silver recovery from spent silver oxide button cells, Hydrometallurgy, 104, pp.106-111. https://doi.org/10.1016/j.hydromet.2010.05.004
  22. Smith, D.F., et al., 1997: New developments in very high rate silver oxide electrodes, Journal of Power Sources, 65, pp.47-52. https://doi.org/10.1016/S0378-7753(97)02467-1
  23. Smith, D.F. and Gucinski, J.A., 1999: Synthetic silver oxide and mercury-free zinc electrodes for silver-zinc reserve batteries, Journal of Power Sources, 80, pp.66-71. https://doi.org/10.1016/S0378-7753(98)00251-1