• Title/Summary/Keyword: acidic pH

Search Result 1,509, Processing Time 0.029 seconds

Isozyme Variants in Genus Pinus by Simulated Acidic Rain (인공 산성비가 소나무속의 동위효소 양상에 미치는 영향)

  • EuiSooYoon
    • Korean Journal of Plant Resources
    • /
    • v.10 no.4
    • /
    • pp.305-313
    • /
    • 1997
  • The effect of acid rain on plant isozyme response was studied with the treatment of simulated acid rain to Pinus densiflora, P. nigida and P. koraiensis for 9 months. The isozyme pattern of $\alpha$-Esterase($\alpha$-Est), Peroxidase(POD) and Glutamate dehydrogenase(GDH) were observed in the control (pH 5.6) and simulated acid rain (pH 3.5) treatment. No changes of isozyme pattern in $\alpha$-Est was observed in P. densiflora after 9 month treatment of simulated acid rain, but, two new isozymes were activated in P. nigida in the same treatment. In P. koraiensis, two new isozyme were activated but five isozymes were not activated. P. densiflora did not show any difference in POD and GDH after the treatment of simulated acid rain. P. nigida showed activation of eight and two isozymes in POD and GDH, respectively. P. koraiensis showed inactivation of 4 isozymes in POD but showed no changes In GDH.

  • PDF

Identification and Characterization of the Acid Phosphatase HppA in Helicobacter pylori

  • Ki, Mi-Ran;Yun, Soon-Kyu;Choi, Kyung-Min;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.483-493
    • /
    • 2011
  • An acid phosphatase (HppA) activated by $NH_4Cl$ was purified 192- and 34-fold from the periplasmic and membrane fractions of Helicobacter pylori, respectively. SDS-polyacrylamide gel electrophoresis revealed that HppA from the latter appears to be several kilodaltons larger in molecular mass than from the former by about 24 kDa. Under acidic conditions (pH${\leq}$4.5), the enzyme activity was entirely dependent on the presence of certain mono- and/or divalent metal cations (e.g., $K^+$,$ NH_4{^+}$, and/or $Ni^{2+}$). In particular, $Ni^{2+}$ appeared to lower the enzyme's $K_m$ for the substrates, without changing $V_{max}$. The purified enzyme showed differential specificity against nucleotide substrates with pH; for example, the enzyme hydrolyzed adenosine nucleotides more rapidly at pH 5.5 than at pH 6.0, and vice versa for CTP or TTP. Analyses of the enzyme's N-terminal sequence and of an $HppA^-$ H. pylori mutant revealed that the purified enzyme is identical to rHppA, a cloned H. pylori class C acid phosphatase, and shown to be the sole bacterial 5'-nucleotidase uniquely activated by $NH_4Cl$. In contrast to wild type, $HppA^-$ H. pylori cells grew more slowly. Strikingly, they imported $Mg^{2+}$ at a markedly lowered rate, but assimilated urea rapidly, with a subsequent increase in extracellular pH. Moreover, mutant cells were much more sensitive to extracellular potassium ions, as well as to metronidazole, omeprazole, or thiophenol, with considerably lowered MIC values, than wild-type cells. From these data, we suggest that the role of the acid phosphatase HppA in H. pylori may extend beyond 5'-nucleotidase function to include cation-flux as well as pH regulation on the cell envelope.

Synthesis of a New α-Dioxime Derivative and Its Application for Selective Homogeneous Liquid-Liquid Extraction of Cu(II) into a Microdroplet Followed by Direct GFAAS Determination

  • Ghiasvand, A. R.;Shadabi, S.;Kakanejadifard, A.;Khajehkoolaki, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.781-785
    • /
    • 2005
  • A fast and reliable method for the selective separation and preconcentration of $Cu^{2+}$ ions using homogeneous liquid-liquid extraction was developed. A new $\alpha$-dioxime derivative (2H-1,4-benzothioazine-2,3(4H)dionedioxime, Dioxime I) was synthesized and investigated as a suitable selective complexing ligand for $Cu^{2+}$ ions. Zonyl FSA (FSA) was applied as a phase-separator agent under the slightly acidic pH conditions. Under the optimal experimental conditions ([FSA] = 3.2% w/v, [THF] = 19.5% v/v, [Dioxime I] = 1.9 ${\times}\;10^{-3}$ M, and pH = 4.7), 10 ${\mu}g\;of\;Cu^{2+}$ in 5.2 mL aqueous phase could be extracted quantitatively into 80 $\mu$L of the sedimented phase. The maximum concentration factor was 65-fold. The limit of detection of the proposed method was 0.005 ng $mL^{-1}$. The reproducibility of the proposed method, on the 10 replicate measurements, was 1.3%. The influence of the pH, type and volume of the water-miscible organic solvent, concentration of FSA, concentration of the complexing ligand and the effect of different diverse ions on the extraction and determination of $Cu^{2+}$ ions were investigated. The proposed method was applied to the extraction and determination of $Cu^{2+}$ ion in different synthetic and natural water samples.

Physical and Chemical Properties of Glycosylsucrose (Glycosylsucrose의 이화학적 특성)

  • 설혜미;지옥화;김미리
    • Korean journal of food and cookery science
    • /
    • v.7 no.4
    • /
    • pp.51-61
    • /
    • 1991
  • Physical and chemical properties of glycosylsucrose were characterized as follows: 1. The moisture content of glycosylsucrose syrup (35% , w/w) was 63.6% and total sugar in solid was 35.9%. 2. Main sugar compositions of glycosylsucrose syrup were maltotetraose 54.5%, sucrose 18.0%, glycosylsucrose 15.3%, maltosylsucrose 11.3% and the content of glucose, maltose, maltotriose and fructose were very little. 3. Perceived sweetness threshold of glycosylsucrose was 0.71%, relative sweetness was 0.53, and sweetness intensity expressed as power function was S=$0.78^{\circ}$C^{1.5}$$. 4. Viscosity of glycosylsucrose was higher than that of sucrose and Japanese product at 10, 25, 35 and $65^{\circ}C$. 5. The content of water absorption of gylcosylsucrose at Aw 0.80 was 0.48 g $H_2$O/g dry weight while that of sucrose was 0.17g $H_2$O/g dryweight at Aw 0.86. 6. The stability of glycosylsucrose was decreased by acidic pH, high temperature and long heating time. 7. The glycosylsucrose showed very little browning when heated with pepton, but alkaline pH (pH8), high temperature and long heating time increased browning reaction.

  • PDF

The Effect of pH and temperature on the Morphology of Aluminum Hydroxides formed by Hydrolysis Reaction (알루미늄의 수화 반응시 pH와 온도에 따른 형상 변화)

  • 오영화;이근회;박중학;이창규;김흥회;김도향
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 2004
  • A formation of aluminum hydroxide by hydrolysis reaction in the water has been studied by using nano aluminum powder fabricated by pulsed wire evaporation(PWE) method. The hydroxide type and morphology depending on temperature and pH were examined by structural analysis. The Boehmite($Al_2O_3$.$H_2O$ or AIO(OH)) was predominantly formed in high temperature region over 4$0^{\circ}C$, while the Bayerite($Al_2O_3$.$H_2O$ or $Al(OH)_3$) below $30^{\circ}C$ of hydrolysis temperature. The Boehmite formation was preferred to the Bayerite in acidic solution in the same hydrolysis temperature. The slowly formed Bayerite phase showed facet crystalline structure, while the fast formed Boehmite was fine fiber with a large aspect ratio of several nm in diameter and several hundred nm in length, and with much larger specific surface area(SSA) than that of Bayerite. The highest SSA was about $420m^2$/g.

Electrochemical Sensing of Hydrogen Peroxide Using Prussian Blue@poly(p-phenylenediamine) Coated Multi-walled Carbon Nanotubes

  • Young-Eun Jeon;Wonhyeong Jang;Gyeong-Geon Lee;Hun-Gi Hong
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.339-347
    • /
    • 2023
  • In this study, a nanocomposite of multi-walled carbon nanotubes@poly(p-phenylenediamine)-Prussian blue (MWCNTs@PpPD-PB) was synthesized and employed for the electrochemical detection of hydrogen peroxide (H2O2). A straightforward approach was utilized to prepare an electrochemical H2O2 sensor using a MWCNTs@PpPD-PB modified glassy carbon electrode, and its electrochemical behavior was investigated through techniques such as electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The modified electrode displayed a favorable electrocatalytic response towards the reduction of H2O2 in an acidic solution. The developed sensor exhibited linearity in the concentration range of 0.005 mM to 2.225 mM for H2O2, with high sensitivity (583.6 ㎂ mM-1cm-2) and a low detection limit (0.95 ㎛, S/N = 3) at an applied potential of +0.15 V (vs. Ag/AgCl). Additionally, the sensor demonstrated excellent selectivity, reproducibility, and stability. Moreover, successful detection of H2O2 was achieved in real samples.

Stability and Modification of Aspergillus awamori $\alpha$-Glucosidase with $IO_4$-oxidized Soluble Starch (과요오드산-산화 가용성 전분에 의한 Aspergillus awamori $\alpha$-Glucosidase의 안정성 및 변형)

  • Ann Yong-Geun
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.1
    • /
    • pp.4-10
    • /
    • 2005
  • Periodate-oxidized soluble starch increased pH stability of Aspergillus awamori a-glucosidase. After incubation for two hours, the enzyme in the absence of oxidized soluble starch was stable in the range of pH 3-7 at 40℃, pH 3-6 at 50℃ and the enzyme in the presence of oxidized soluble starch was stable in the range of pH 3-9 at 40℃, pH 3-8 at 50℃. At 60℃, the enzyme was stable in pH 3-6 regardless of the presence or absence of IO₄-oxidized soluble starch, but when IO₄-oxidized soluble starch existed in pH 5-6, remained activity of the enzyme increased 20% more than when it didn't exist. The enzyme modified with IO₄-oxidized soluble starch remained 70% of activity in pH 9, but native enzyme didn't remain, showing the increase of stability due to modification. In thermal stability, modified enzyme remained 12% at 50℃ and 7% at 80℃. But native enzyme remained 8% at 50℃ and didn't remain at more than 70℃. The result of HPLC analysis revealed the subunit of the enzyme at under pH 2 or over pH 9 was separated or the enzyme was denatured and conjugated. Protein structure of native enzyme was denatured by acidic and basic pH but was stable in the presence of IO₄-oxidized soluble starch.

Food Functionality of Collagenous Protein Fractions Recovered from Fish Roe by Alkaline Solubilization (어류 알로부터 알칼리 가용화공정을 통해 회수한 Collagenous Protein 획분의 식품 기능특성)

  • Yoon, In Seong;Kim, Jin-Soo;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.4
    • /
    • pp.351-361
    • /
    • 2018
  • This study investigated the potential of collagenous protein fractions (CPFs) as functional foods. The specific CPFs studied were recovered from the roe of bastard halibut (BH), Paralichthys olivaceus; skipjack tuna (ST), Katsuwonus pelamis; and yellowfin tuna (YT), Thunnus albacares through the alkaline solubilization process at pH 11 and 12. The buffer capacity, water-holding capacity and solubility of CPFs with pH-shift treatment were significantly better at alkaline pH (10-12) than at acidic pH (2.0). At pH-shift treatment (pH 2 and 12), the foaming capacities of CPFs from ST and YT were improved compared to those of controls, but they were unstable compared to BH CPFs. The emulsifying activity index (EAI, $m^2/g$ protein) of CPFs (controls) was 16.0-21.1 for BH, 20.1-23.9 for ST and 9.3-13.7 for YT (P<0.05). CPFs adjusted to pH 12 showed improved EAI and YT CPFs showed significantly greater emulsifying ability than those from BH and ST. CPFs recovered from fish roe are not only protein sources but also have a wide range of food functionalities, confirming the high availability of fish sausage and surimi-based products as protein or reinforcing materials for functional foods and alternative raw materials.

An Efficient Sulfuric Acid- and Hydrazine-based Process for Recycling Wastewater Generated From U(VI)-Contaminated Soil-Washing

  • Hyun-Kyu Lee;Byung-Moon Jun;Tack-Jin Kim;Sungbin Park;Seonggyu Choi;Jun-Young Jung;Hee-Chul Eun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.159-171
    • /
    • 2024
  • This study aimed to develop an efficient recycling process for wastewater generated from soil-washing used to remediate uranium (U(VI))-contaminated soil. Under acidic conditions, U(VI) ions leached from the soil were precipitated and separated through neutralization using hydrazine (N2H4). N2H4, employed as a pH adjuster, was decomposed into nitrogen gas (N2), water (H2O), and hydrogen ions (H+) by hydrogen peroxide (H2O2). The residual N2H4 was precipitated when the pH was adjusted using sulfuric acid (H2SO4) to recycle the wastewater in the soil-washing process. This purified wastewater was reused in the soil-washing process for a total of ten cycles. The results confirmed that the soil-washing performance for U(VI)-contaminated soil was maintained when using recycled wastewater. All in all, this study proposes an efficient recycling process for wastewater generated during the remediation of U(VI)-contaminated soil.

Preparation of Edible Films from Soybean Meal (대두박을 이용한 가식성 필름의 제조에 관한 연구)

  • Yang, Sung-Bum;Cho, Seung-Yong;Rhee, Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.452-459
    • /
    • 1997
  • Effect of extraction pH on mechanical properties such as tensile strength (TS) and elongation (E) and on water vapor permeability (WVP) of soybean protein isolate (SPI) edible films extracted from soybean meal was investigated. Five pHs, acidic range (pH 2.0 and pH 3.0), neutral range (pH 7.0) and alkalic range (pH 10.0 and 12.0), were used to extract SPI. TS of the film extracted at pH 7.0 was the lowest, and WVP of $SPI_3$ (SPI extracted at pH 3) film was the lowest value among the films. The WVP of $SPI_3$ films was $3.349\;{\times}\;10^{-10}\;g{\cdot}m/m^2{\cdot}s{\cdot}Pa$ and increased to $3.871\;{\times}\;10^{-10}\;g{\cdot}m/m^2{\cdot}s{\cdot}Pa$ as film thickness increased from $55\;{\mu}m$ to $72\;{\mu}m$ thickness. Three different plasticizers (glycerol, polyethylene glycol and propylene glycol) were used for $SPI_2$ (SPI extracted at pH 2) film. TS of $SPI_2$ films was 12.297 MPa and decreased to 1.356 MPa for glycerol and showed the same trend in other two plasticizers. The SPI films extracted at acidic range were shown higher mechanical properties and lower water vapor permeabilities than those of extracted at neutral and alkalic ranges. The difference of SPI film properties seemed to be attributed by 11S/7S ratio as well as protein content.

  • PDF