• Title/Summary/Keyword: acidic pH

Search Result 1,509, Processing Time 0.032 seconds

Coloration and Chemical Stability of SiO2 and SnO2 Coated Blue CoAl2O4 Pigment (SiO2, SnO2 코팅된 청색 CoAl2O4 안료의 색상, 물성 평가 연구)

  • Yun, JiYeon;Yu, Ri;Pee, Jae-Hwan;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.377-381
    • /
    • 2014
  • This work describes the coloration, chemical stability of $SiO_2$ and $SnO_2$-coated blue $CoAl_2O_4$ pigment. The $CoAl_2O_4$, raw materials, were synthesized by a co-precipitation method and coated with silica ($SiO_2$) and tin oxide ($SnO_2$) using sol-gel method, respectively. To study phase and coloration of $CoAl_2O_4$, we prepared nano sized $CoAl_2O_4$ pigments which were coated $SiO_2$ and $SnO_2$ using tetraethylorthosilicate, $Na_2SiO_3$ and $Na_2SiO_3$ as a coating material. To determine the stability of the coated samples and their colloidal solutions under acidic and basic conditions, colloidal nanoparticle solutions with various pH values were prepared and monitored over time. Blue $CoAl_2O_4$ solutions were tuned yellow color under all acidic/basic conditions. On the other hand, the chemical stability of $SiO_2$ and $SnO_2$-coated $CoAl_2O_4$ solution were improved when all samples pH values, respectively. Phase stability under acidic/basic condition of the core-shell type $CoAl_2O_4$ powders were characterized by transmission electron microscope, X-ray diffraction, CIE $L^*a^*b^*$ color parameter measurements.

Preparation of Hydrophilic Coating Film Using GPS(Glycidoxypropyl Trimethoxysilane) (GPS(Glycidoxypropyl Trimethoxysilane)을 이용한 친수성 코팅 필름의 제조)

  • Park, Jung Kook;Song, Ki Chang;Kang, Hyun Uk;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.735-740
    • /
    • 2002
  • In order to improve the anti-fogging property of polymer films, organic-inorganic hybrid coating solutions which have good hydrophilic property and transmission in the range of visible light were synthesized by the sol-gel method. The coating solutions were prepared by adding glycidoxypropyl trimethoxysilane(GPS) to a colloidal silica(15 nm) suspension(Ludox). GPS as silane coupling agent forms strong bonds to the colloidal silica and surrounding polymer matrix and links two different materials together. Solutions prepared by addition of GPS at the acidic condition resulted in coatings that were less prone to cracking, while those at the basic condition caused coatings with more cracking. These resulted in better hydrophilic property and transmission in the range of visible light for the solution prepared at the acidic condition(pH 2). Compared with coatings under acidic conditions, coatings prepared at basic conditions showed worse hydrophilic property and transmission in the range of visible light.

Reaction Conditions and Mechanism of Electrolytic Reduction of Nitrobenzene (니트로벤젠의 전해환원 반응 조건과 메카니즘)

  • Chon Jung Kyoon;Paik Woon Kie
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.404-412
    • /
    • 1977
  • Electrochemical reduction of nitrobenzene (${\phi}NO_2$) and its derivatives on Pb electrode was studied by means of galvanostatic measurements and coulometric electrolysis in ethanol-water solvent. In acidic solutions phenylhydroxyl amine and aniline ethanol-water solvent. In acidic solutions phenylhydroxyl amine and aniline were produced while nitrosobenzene and coupled products such as azo-and hydrazobenzene were produced in basic solutions. Nitrosobenzene (${\phi}NO$) was not found to be an intermediate in the reduction reactions of ${\phi}NO_2$ in acidic solutions. No direct coupling between ${\phi}NO\;and\;{\phi}NHOH$ was observed to occur in the electrolyte solutions used. Mechanisms of the production of phenylhydroxylamine and nitrosobenzene are deduced from Tafel slope, pH dependence and reaction order with respect to nitrobenzene. Mechanism for the reduction of substituted nitrobenzenes seems to be identical to that of nitrobenzene.

  • PDF

A Study on the Treatment of Refractory Organics by Redox Reaction of Cu-Zn Metal Alloy (Cu-Zn 금속 합금의 산화.환원 반응에 의한 난분해성 COD처리에 관한 연구)

  • Song, Ju-Yeong;Park, Ji-Won;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.166-172
    • /
    • 2013
  • The purpose of this study is to evaluate the treatment ability of refractory organics in hot rolling precess waste water by redox(reduction and oxidation) reaction. Metal is oxidized in an aqueous solution to generate electron which can reduce water to generate hydroxy radical. These hydroxy radical is very effective to conduct hydrogen abstraction reaction and addition reaction to the carbon - carbon unsaturated link. The surface area of metal alloy reaction material is more than enough to get equilibrium at a single treatment. The efficiency of COD treatment by redox reaction showed maximum at mild pH of pH 7 and pH 6. But it was not effective in acidic atmosphere of pH 3, 4, 5 and basic atmosphere of pH 8 or over. Redox reaction system in much more helpful in a commercial coagulation sedimentation treatment than exclusive system.

Characteristics of Culture Conditions for the Production of Crude Biosurfactant by Bacillus subtilis JK-1 (Bacillus subtilis JK-1의 생물계면활성제 생산을 위한 배양 특성)

  • Kim, Ji-Yeon
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.3
    • /
    • pp.153-158
    • /
    • 2011
  • Optimal culture conditions were characterized for production of crude biosurfactant of Bacillus subtilis JK-1. During incubation of B. subtilis JK-1, the bacterial growth pattern, changes of the surface tension at variable temperatures, pH and NaCl concentrations in bacterial culture medium were studied. The strain was able to grow and produce biosurfactant at $15-45^{\circ}C$, in the pH range of 6-10, and at 0-10% (w/v) NaCl. In case, culture broth pH was gradually changed to neutral or weak alkaline. Optimal culture conditions for crude biosurfactant production were at $35^{\circ}C$ and pH 7.0 after 48 h incubation and the surface tension of biosurfactant was 24.0 mN/m. Besides, as the concentration of NaCl was increased from 0 to 10% (w/v), the growth was decreased, pH of the culture broth was converted from weak alkaline to acidic, and the surface tension rised.

Changes in Optimum pH and Thermostability of $\alpha$-amylase from Bacillus licheniformis by Site-directed Mutagenesis of His 235 and Asp 328

  • Kim, Mi-Sook;Lee, Sang-Kyou;Jung, Han-Seung;Yang, Chul-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.832-835
    • /
    • 1994
  • The ${alpha}$-amylase gene of Bacillus licheniformis has been cloned and two mutant ${alpha}$-amylase genes of which histidine 235 was changed to glutamine (H235Q) and aspartic acid 328 to glutamic acid (D328E) have been produced by site-directed mutagenesis. The kinetic parameters, optimum pH and thermostability of wild type(WT) and these two mutant amylases expressed in E. coli MC1061 have been compared after purification. The $K_m$ values of WT, H235Q and D328E ${alpha}$-amylases were 0.22%, 0.73%, and 0.80% respectively, when using starch as the substrate. The $V_max$ values of wild type ${alpha}$ -amylase and mutant ${alpha}$-amylases were 0.6-0.7%/minute, and did not show any significant differences among them. The optimum pH of D328E ${alpha}$-amylase was shifted to more acidic pH. Also, the thermostability of H235Q ${alpha}$-amylase was increased compared to the wild type ${alpha}$-amylase.

Preparation and Investigation on Swelling and Drug Delivery Properties of a Novel Silver/Salep-g-Poly(Acrylic Acid) Nanocomposite Hydrogel

  • Bardajee, Ghasem Rezanejade;Hooshyar, Zari;Kabiri, Firozeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2635-2641
    • /
    • 2012
  • Novel silver/salep-g-poly(acrylic acid) nanocomposite hydrogel were prepared in aqueous solution using poly(acrylic acid) grafted onto salep as a biopolymer based material. FT-IR spectra confirmed that poly(acrylic acid) (PAA) had been grafted onto salep in graft copolymerization reaction. TEM observations showed that silver nanoparticles have been uniformly dispersed in polymeric matrix. Effects of pH, acrylic acid (AA) amount and silver ion concentration on swelling capabilities were investigated. Results indicate that modifying AA and silver ion can improve swelling properties of the resultant nanocomposite hydrogel. pH response of this nanocomposite hydrogel in acidic and neutral pH made it suitable for drug delivery applications.

Dyeability of Cationized PET Fabrics to Acid Dyes via Photografting (광그라프트로 양이온화된 PET 직물의 산성 염료에 대한 염색성)

  • Son, Jung-A;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.20 no.2
    • /
    • pp.38-46
    • /
    • 2008
  • PET fabrics were cationized via photografting under continuous UV irradiation with a cationic monomer. The grafted PET was dyed with three acid dyes. Effect of dye concentration, dyeing time, temperature and pH on acidic dyeing of the cationized PET fabrics was assessed to find optimal dyeing condition. The cationized fabrics was successfully dyed at $75^{\circ}C$ under pH 5.5. However the dyeing sites of the grafted fabrics were nearly occupied above 5%owf dye concentration and the rapid exhaustion of the anionic dyes was observed. The dyeability of the cationized PET fabrics was increased proportionally with increasing percent grafting because of the introduction of ionic attraction between quaternary ammonium groups and acid dyes. Lower dyeability both at alkaline and pH 3 condition attributed to negative zeta potentials of the grafted fabrics and the reduced charge of the acid dyes respectively.

Antibacterial Activity and Characteristics of Bacteriocin Produced by Lactobacillus plantarum LMG 7945 (Lactobacillus plantarum LMG 7945가 생산하는 bacteriocin의 항균력과 그 특성)

  • 김상현;이명숙;장동석
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.2
    • /
    • pp.65-71
    • /
    • 1995
  • Bacteriocins from lactic acid bacteria have attracted much attention in recent years because of their useful worth in increasing safety and extending shelf life of foods. These substances show an inhibitory effect against some food spoilage bacteria and food-borne pathogens. The inhibitory effect fo the bacteriocin produces by lactic acid bacteria against Listeria monocytogenes(L. monocytogenes) was examined in this study. The culture supernatants of 5 kinds of bacteria among the 10 kinds of testes lactic acid bacteria had the inhibitory activity against Listeria sp., various Gram positive and Gram negative bacteria. Bacteriocin produced by Lactobacillus plantarum(Lact. plantarum) LMG 7945 was the most active toward L. monocytogenes. Bacteriocin production of the Lact. plantarum LMG 7945 cultured on MRS broth was increased late logarithmic phase over early stationary phase. This bacteriocin was stable at heat treatment and acidic pH relatively; The activity was retained after heating at 121$^{\circ}C$ for 15min and was active in the pH range of 2~4 but was lost above pH 5.

  • PDF

Novel route of enhancing the metal loading in highly active Pt/C electro-catalyst by polyol process (Polyol process를 통한 고비율 백금 담지 촉매 합성)

  • Oh, Hyung-Suk;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.560-563
    • /
    • 2008
  • A modified polyol process is developed to enhance Pt loading during the preparation of Pt/C catalysts. With the help of the zeta potential, the effect of pH on the electrostatic forces between the support and the Pt colloid is investigated. It is shown experimentally that the surface charge on the carbon support becomes more electropositive when the solution pH is changed from alkaline to acidic. However, this change does not affect the electronegative surface charge of Pt colloids already attained and stabilized by glycolate anions. This new behavior caused by the change in the solution pH accounts for the enhanced yield of the process and does not affect the Pt particle size. All our experimental results reveal that this simple modification is a cost effective method for the synthesis of highly Pt loaded Pt/C catalysts for fuel cells.

  • PDF