• Title/Summary/Keyword: acidic gas

Search Result 161, Processing Time 0.028 seconds

In Vitro Proliferation Model of Helicobacter pylori Required for Large-Scale Cultivation

  • Oh, Heung-Il;Lee, Heung-Shick;Kim, Kyung-Hyun;Paek, Se-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.367-374
    • /
    • 2000
  • The composition of dissolved gases and nutrients in a liquid medium were determined for establishment of the optimum conditions for in vitro culture of Helicobacter pylori. A microaerobic condition facored by the organism was prepared by adjusting the partial pressure of the gas, agitation speed, and viscosity of the medium. The gaseous concentrations were controlled by utilizing CampyPak Plus that reduced oxygen while augmenting carbon dioxide. Agitation of the broth facilitated the oxygen transfer to the cells, yet inhibited the growth at high rates. An increase of viscosity in the medium repressed the culture although this variable was relatively insignificant. The chemical constituents of the liquid broth were examined to establish an economic model for H. pylori cultivation. The microbe required a neutral pH for optimum growth, and yet was also able to proliferate in an acidic condition, presumably by releasing the acidity-modulating enzyme, urease. Cyclodextrin and casamino acid were investigated as growth enhancers in place of serum, while yeast extract unexpectedly inhibited the cells. A low concentration of glucose, the unique carbon source for the organism, increased the cell density, yet high concentrations resulted in an adverse effect. Under optimally dissolved gas conditions, the cell concentration in brucella broth supplemented with serum substitutes and glucose reached $1.6{\times}10^8$ viable cells/ml which was approximately 50% higher than that obtained in the liquid medium added with only cyclodextrin or serum.

  • PDF

Reductive dechlorination of tetrachloroethylene by bimetallic catalysts on hematite in the presence of hydrogen gas

  • Choi, Kyunghoon;Lee, Nara;Lee, Woojin
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.151-162
    • /
    • 2014
  • Among the combination of 4 different second metals and 3 different noble metals, Ni 10%-Pd 1%/hematite (Ni(10)-Pd(1)/H) showed best tetrachloroethylene (PCE) removal (75.8%) and production of non-toxic products (39.8%) in closed batch reactors under an anaerobic condition. The effect of environmental factors (pH, contents of Ni and Pd in catalyst, and hydrogen gas concentration) on the reductive dechlorination of PCE by Pd-Ni/hematite catalysts was investigated. PCE was degraded less at the condition of Ni(5)/H (13.7%) than at the same condition with Ni(10)/H (20.6%). Removals of PCE were rarely influenced by the experimental condition of different Pd amounts (Pd(1)/H and Pd(3)/H). Acidic to neutral pH conditions were favorable to the degradation of PCE, compared to the alkaline condition (pH 10). Increasing Ni contents from 1 to 10% increased the PCE removal to 89.8% in 6 hr. However, the removal decreased to 74.2% at Ni content of 20%. Meanwhile, increasing Pd contents to 6% showed no difference in PCE removal at Pd content of more than 1%. Increasing H2 concentration increased the removal of PCE until 4% H2 which was maximumly applied in this study. Chlorinated products such as trichloroethylene, 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride were not observed while PCE was transformed to acetylene (24%), ethylene (5%), and ethane (11%) by Ni(10)-Pd(1)/H catalyst in 6hr.

A Study on the Effectiveness of Remanufacturing Technology for the Diesel Oxidation Catalyst(DOC) Deactivated by Diesel Exhaust Gas (경유차 매연저감장치에 의해 비활성화된 DOC촉매의 재제조 효과에 관한 연구)

  • Park, Hea-Kyung
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.265-271
    • /
    • 2010
  • The deactivated diesel oxidation catalyst(DOC) was remanufactured by ultrasonic wave treatment with various solutions, followed by active component re-impregnation. The catalytic performance and surface properties of remanufactured DOC were studied at various remanufacturing conditions. The proper ultrasonic-wave cleaning time at various solutions and optimal re-impregnation amounts of active component for the best catalytic performance were investigated. The catalytic performance tests on the conversions of CO and THC(total hydrocarbon) were also carried out at various temperatures by catalytic reaction test unit using bypass gas from the diesel engine dynamo system. It was found that the catalytic performance of DOC remanufactured with the high-temperature air washing, ultrasonic wave cleaning at acidic/basic solutions and active component re-impregnation method was recovered to 90% level of its activity compared to that of the fresh DOC, which was caused by removing the deactivating materials from the surface of the DOC through the analyses of catalyst performance test and their characterization by Optical microscope, EDX, ICP, TGA, and porosimeter.

A Study on the Polyamide Based Thermoplastic Composites for Fuel Cell Separators (연료전지 분리판용 폴리아미드계 복합체의 특성 연구)

  • Lee, Kwang-Yong;Kim, Jeong-Heon;Ryu, Sung-Hun
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.253-258
    • /
    • 2008
  • In this study polyamide 6,6 based thermoplastic composite with graphite and carbon black had been examined feasibility for separators of fuel cell which requires good mechanical and electrical properties with gas impermeability. The effects of molding pressure and filler content on the properties of the composite were investigated. Maximum flexural modulus was obtained about 80 wt% graphite, while electrical conductivity increased with graphite content. Flexural strength increased with molding pressure and tended to level-off from $400\;kgf/cm^2$. Molding pressure did not affect the electrical conductivity. The addition of carbon black enhanced the electrical conductivity of the composite. Mechanical properties were decreased under acidic condition.

김치로부터 분리한 효모가 생산하는 휘발성 화합물이 김치의 풍미에 미치는 효과

  • 김혜자;양차범;강상모
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.512-518
    • /
    • 1996
  • Eleven strains had been previously isolated from kimchi and identified in our laboratory. The ability of each strain in aroma production was investigated by sensory evaluation. Among them Saccharomyc s sp. YK-17, Saccharomyces sp. YK-18, Saccharomyces sp. YH-3 and Saccharomyces fermentati YK-19 produced fruity flavour. Especially, Saccharomyces fermentati YK-19 produced apple and pineapple-like flavours. Pichia media YK-11, Saccharomyces sp. YK-20 and Pichia chambardii YH-4 produced wine-like flavour. Debaryomyces sp. YK-6, Debarymyces coudertii YK-10, Saccharomyces sp. YK-12 and Pichia haplophilia YH-5 produced alcoholic flavours. Using the good flavour producing strains as starters, various groups of kimchi were fermented, and the sensory characteristics of each group such as odor, taste and total acceptability were evaluated. The acidic odor, moldy odor and taste were reduced by adding starter, while the fresh sourness odor and taste similar to fruity fiavour were increased by starter. Comparing with the control group, these odor, taste and total acceptability were increased in the starter-added groups, such as Pichia edia YK-11, Saccharomyces sp. YK-17, and Saccharomyces,fermentati YK- 19. Saccharomyces fermentati YK-19 added kimchi group was higher siginificantly (P<0.05) than the others at the total acceptability. Volatile compounds of the culture broth of Saccharomyces fermentati YK-19 were analysed by gas chromatography, and 6 species of esters and 4 species of alcohols were identified. Among them, the ester substances which broth largely responsible for the apple-like flavour in the sensory evaluation, were found to be ethyl 2-methyl butvrate, ethyl pentanoate and ethyl acetate.

  • PDF

Characterisation of the pyrolysis oil derived from bael shell (aegle marmelos)

  • Bardalai, Monoj;Mahanta, Dimbendra Kumar
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.180-187
    • /
    • 2016
  • In the present work, bael shell (aegle marmelos) is used as the feedstock for pyrolysis, using a fixed bed reactor to investigate the characteristics of the pyrolysis oil. The product yields, e.g., liquid, char and gases are produced from the biomass at different temperatures with the particle size of 0.5-1.0 mm, at the heating rate of $150^{\circ}C/min$. The maximum liquid yield, i.e., 36.23 wt.%, was found at $5500^{\circ}C$. Some physical properties of the pyrolysis oil such as calorific value, viscosity, density, pH, flash point and fire point are evaluated. The calorific value of the bael shell pyrolysis oil was 20.4 MJ/kg, which is slightly higher than the biomass, i.e., 18.24 MJ/kg. The H/C and O/C ratios of the bio-oil were found as 2.3 and 0.56 respectively, which are quite higher than some other bio-oils. Gas Chromatography and Mass Spectroscopy (GC-MS) and Fourier Transform Infra-red (FTIR) analyses showed that the pyrolysis oil of bael shell is mostly composed by phenolic and acidic compounds. The results of the properties of the bael shell pyrolysis oil reveal the potential of the oil as an alternate fuel with the essential upgradation of some properties.

Applications of Ozone Micro- and Nanobubble Technologies in Water and Wastewater Treatment: Review (정수 및 폐수처리에서 오존 미세기포와 초미세기포 기술의 적용 : 리뷰)

  • Tekile, Andinet;Kim, Ilho;Lee, Jai-Yeop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.481-490
    • /
    • 2017
  • Water and wastewater treatment has always been a challenging task due to the continuous increase in amount and the change in characteristics of the poorly biodegradable and highly colored organic matters, as well as harmful micro-organisms. Advanced techniques are therefore required to successfully remove these pollutants from water before reuse or discharge to receiving water bodies. Application of ozone, which is a powerful oxidant and disinfectant, alone or as part of advanced oxidation process depends on the complex kinetic reactions and the mass transfer of ozone involved. Micro- and nano bubbling considerably improves gas dissolution compared to conventional bubbles and hence mass transfer. It can also intensify generation of hydroxyl radical due to collapse of the bubbles, which in turn facilitates oxidation reaction under both alkaline as well as acidic conditions. This review gives the overview of application of micro- and nano bubble ozonation for purification of water and wastewater. The drawbacks of previously considered techniques and the application of the hydrodynamic ozonation to synthetic aqueous solutions and various industrial wastewaters are systematically reviewed.

Synthesis of Organic Silicon Compounds from Siliceous Mudstone (규질이암으로부터 실리콘 유기화합물 합성)

  • Kim, Byoung-Gyu;Jang, Hee-Dong;Kim, Jong-Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.155-163
    • /
    • 2007
  • A novel route to the synthesis of tetramethoxysilane and other silicon alkoxides is described using siliceous mudstone as the raw material. The reaction of amorphous silica with triethanol-amine is enhanced by using an alkali metal hydroxide catalyst to form a range of triethanol-amnine-substituted silatrane species. These can undergo alkoxide exchange in acidic alcohols to form alkoxysilatranes, tetraalkoxysilanes, hexaalkoxydisiloxanes and higher siloxanes. Products were identified by FT-IR spectroscopy, XRD, SEM, 1H and 13C NMR spectroscopy, or gas chromatography.

Equilibrium and Dynamic Adsorption of Methylene Blue from Aqueous Solutions by Surface Modified Activated Carbons

  • Goyal, Meenakshi;Singh, Sukhmehar;Bansal, Roop C.
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.170-179
    • /
    • 2004
  • The equilibrium and dynamic adsorption of methylene blue from aqueous solutions by activated carbons have been studied. The equilibrium studies have been carried out on two samples of activated carbon fibres and two samples of granulated activated carbons. These activated carbons have different BET surface areas and are associated with varying amounts of carbon oxygen surface groups. The amounts of these surface groups was enhanced by oxidation with $HNO_3$ and $O_2$ gas at $350^{\circ}C$ and decreased by degassing at increasing temperatures of $400^{\circ}$, $650^{\circ}$ and $950^{\circ}C$. The adsorption increases on oxidation of the carbon surface and decreases on degassing. The increase in adsorption has been attributed to the formation of acidic carbon-oxygen surface groups and the decrease in adsorption on degassing to their elimination. The dynamic adsorption studies have been carried out on the two granulated activated carbons using two 50 mm diameter glass columns at a feed concentration of 300 mg/L and at different hydraulic loading rates (HLR) and bed heights. The minimum achievable concentrations are comparatively lower while the adsorption capacities are higher for GAC-S under the same operating conditions. The adsorption capacity of a carbon increases with increase in HLR but the rate of increase decreases at higher HLR values.

  • PDF

Studies on the Formatiion of N-Nitrosamine in the Salt-Fermented Damsel fish Chromis notatus (자리젓 중 N-Nitrosamine 생성에 관한 연구)

  • 김수현;강순배;이응호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.1
    • /
    • pp.35.2-72
    • /
    • 1990
  • N-Nitrosamines have been known to be strong carcinogens and are formed by the reaction of nitrous acid with amines. In this experiment the changes in the contents of nitrate nitrite trimethylaminoxide(TMAO) trimethylamine(TMA) and dimethylamine(DMA) during femen-tation of damsel fish were analyzed periodically and N-nitrosamines in a commercial products. N-Nitrosamines were determined by mineral oil distillation methods using gas chromatography-thermal energy anlyzer(GC-TEA) in a commerical product. Nitrate nitrite and amines were quantitate by colorimetric methods. Level of nitrate-N were gradually decreased but nitrite-n was not detected or trace. Contents of dimethlamine(DMA) and trimethlamine were mar-kedly increased while trimethylaminoxide nitrogen was decreased during the fermentation of damsel fish. The change of pH was in the ranges of 5,5-7.0 during fermentation of salted damsel fish. It was out of the optimum pH(3.0-3.4) for the formation of nitrosamine. N-Nitrosamines were not detected in salt-fermented damsel fist but much N-nitrosodimethyla-mine(NDMA) could be detected in salt-fermented damsel fish after adding 0.05M NaNo2 in the acidic condition. The identifaction of NDMA in it was confirmed by mass spectrophotometry. Nitrate decrea-sed during the fermentation of damsel fish. however nitrite was trace level and nitrosamines were not formed in its. This could be supposed that it was due to the rapid consumption of nitrite by amino acid and bacteria.

  • PDF