• Title/Summary/Keyword: acid-hydrolysis

Search Result 1,329, Processing Time 0.026 seconds

Chemical Agent Disposal Technology by a 2-step Process(I) (Agent Hydrolysis followed by Incineration) (화학작용제의 2단계 폐기기술(I) (작용제 가수분해 후 액중배기식 소각처리))

  • Lee, Jong-Chol;Lee, Yong-Han;Oh, Sok-Chong;Hong, Dea-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.116-122
    • /
    • 2007
  • A 2-step process for the safe disposal of chemical warfare agents(agent hydrolysis followed by incineration In the submerged-quench incinerator) was studied to obtain basic data for the design of pilot plant in the future. Sample materials used for the hydrolysis reaction were sarin(GB), sulfur mustard (HD), and methylphosphonic difluoride(DF). The hydrolysates of these materials were thermally destroyed in a submerged-quench incineration system. Experimental conditions for achieving destruction efficiency of 99.99% in both steps were established and phosphoric acid was recovered from the waste water when destroying DF hydrolysate in the incinerator. Treated water could be reused as process water for the agent hydrolysis.

Synthesis and Hydrolysis of Ketoprofen Prodrug Conjugated to Poly(Ethylene Glycol) (케토프로펜-폴리에틸렌글리콜 전구약물의 합성 및 가수분해)

  • Lee, Se-Hee;Kim, Hee-Doo;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.37-43
    • /
    • 2003
  • The objective of this study is to prepare ketoprofen (KP) - poly(ethylene glycol) (PEG) conjugates and to investigate their degradation kinetics. KP-PEG conjugates were synthesized from KP and PEG methy1ester by esterification in the presence of DCC. The KP-PEG conjugates (KPEG) were characterized by IR and $^{1}H-NMR$ spectroscopy. The hydrolysis of KPEG with time was studied using HPLC by simultaneous quantification of KP and KPEG. The hydrolysis rate constant was high at low and high pHs, and showed minimum at pH 4 and 5. As the size of KPEG increases, hydrolysis rate increased. The slope of degradation rate profile suggests that catalytic reaction seems to occur by specific acid/base catalysis. These results suggest that KPEG could be used as a prodrug for KP, which releases KP slowly in the body.

Alkali Hydrolysis of Insoluble Sericin (불용성 세리신의 알칼리 가수분해)

  • 김정호;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.31-35
    • /
    • 2000
  • When insoluble sericin was hydrolyzed by treatment of NaOH solution, the solubility was increased with higher treatment temperature and longer treatment time. Whereas it was decreased in addition of NaHSO$_3$. As the results of electrophoresis in sericin powder obtained by the NaOH treatment, a distinguishable band was not confirmed. Average degree of polymerizations(A.D.P.) of sericin hydrolyzed by NaOH solutions were about 19.6∼22.1 and average molecular weight(M.W.) were about 2,200∼2,500. The longer hydrolysis time increased the whiteness of sericin powder. As the results of amino acid analysis, the contents of Thr., Tyr., and Ser. were decreased in NaOH hydrolysis as compared to HCl hydrolysis. In DSC analysis, thermal deformation and pyrolysis peak located at near 230$\^{C}$ and 320$\^{C}$, respectively.

  • PDF

Hydrolysis of Pulp Sludge for Lactic Acid Fermentation using Enzyme System

  • Lee, Sang-Mok;Jianqiang, Lin;Gu, Yun-Mo
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.504-507
    • /
    • 2000
  • Enzymatic hydrolysis of cellulose was studied with emphasis on the effect of cellulase loading and pulp sludge concentration on glucose yield. Enzyme loading appeared to have a significant effect on glucose yield. Chemical pretreatment had no effect on enzymatic hydrolysis of pulp sludge. High glucose yield was obtained from enzymatic hydrolysis, especially at sludge concentrations lower than twenty percent. The optimum concentrations of crude cellulase and ${\beta}-glucosidase$ were 5 U/mL and 8 U/mL, respectively, considering the amount of enzymes used and glucose produced.

  • PDF

Bifunctional Group Participated Nitrile Group Hydrolyzing Enzyme Model Systems: Hydrolysis of the Nitrile Group of $\alpha$-Aminophenylacetonitrile to Phenylglycineamide and Phenylglycine by Various thiol Compounds

  • Lee, Young-Bok;Goo, Yang-Mo;Lee, Jae-Keun
    • Archives of Pharmacal Research
    • /
    • v.11 no.4
    • /
    • pp.285-291
    • /
    • 1988
  • 2-mercaptoethanol, thioglycolic acid, glutathione, 3-mercapto-1, 2-propanediol and 3-mercapto-2-butanol showed catalytic activities on the hydrolysis of $\alpha$-amino-phenylacetonitrile to phenylglycineamide at the rate of 12.19 $\times$ $10^{-2}$, 8.03 $\times$ $10^[-2}$, 6.83 $\times$ $10^{-2}$, 8.60 $\times$ $10^{-2}$ and 6.04 $\times$ $10^{-2}$ mM $min^{-1}$, respectively. hte hydrolysis rate was faster in buffer than in water. The hydrolysis of the nitrile compound to phenylglycine was limited.

  • PDF

Industrial Applications of Saccharification Technology for Red Seaweed Polysaccharide (산업적 응용을 위한 홍조류 당화 기술)

  • Hong, Chae-Hwan;Kim, Se Won;Kim, Yong-Woon;Park, Hyun-Dal;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.307-315
    • /
    • 2014
  • Recently seaweed polysaccharides have been extensively studied for alternative energy application. Because their producing cost is high and efficiency low, their industrial applications have been limited. The main component of cell wall of red algae represented by Gelidiales and Gracilariales is agar. Red-algae agar or galactan, consisting of D-galactose and 3, 6-anhydro-L-galactose, is suitable for bio-product application if hydrolyzed to monomer unit. For the hydrolysis of algae, chemical or enzymatic treatment can be used. A chemical process using a strong acid is simple and efficient, but it generates together with target sugar and toxic compounds. In an enzymatic hydrolysis process, target sugar without toxic compounds generation. The objective of this review is to summary the recent data of saccharification by chemical and enzymatic means from red seaweed for especially focused on automobile industry.

Characterization and Synthesis of Titanium (IV) Isopropoxide Derivatives (Titanium(IV) isoproxide 유도체의 합성 및 특성연구)

  • Jung, Mie-Won
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.509-514
    • /
    • 1999
  • The systematic modification of titanium(IV) isopropoxide with acetic acid as a organic additive was done and identifided by FT-IR, $^1H$, $^{13}C$ NMR and UV-Vis spectroscopy. The structure was cbanged after hydrolysis-condensation reaction and drying process. The hydrolysis-condensation rates of modified Ti alkoxide with acetic acid were investigated by $^1H$ NMR spectroscopy. This modified Ti(IV) alkoxide was less reactive toward hydrolysis-condensation reaction than $Ti(OPr^i)_4$, which can be attributed to the stable ligand structure between Ti alkoxide and ligand. The structural change on obtained from gel powders with heat treatment was also observed by FT-IR spectroscopy.

  • PDF

Pretreatment of Wastepaper using Aqueous Glycerol under High Pressure to Enhance Enzymatic Hydrolysis (효소 가수분해 향상을 위해 고압조건에서 Glycerol 수용액을 사용한 폐지의 전처리)

  • Seo, Dong Il;Kim, Chang-Joon;Kim, Sung Bae
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.193-198
    • /
    • 2014
  • Pretreatment of wastepaper using aqueous glycerol under high pressure was studied to enhance the enzymatic hydrolysis. The pretreatment was conducted over a wide range of conditions including temperatures of $150{\sim}170^{\circ}C$, sulfuric acid concentrations of 0.5~1.5%, and reaction times of 30~90 minutes. After the effect of glycerol concentration on the pretreatment performance was investigated, 70% glycerol was selected. As glycerol concentration was increased, higher digestibility was achieved due to higher lignin removal. The optimum condition was found to be around $160^{\circ}C$, 1%, and 60 minutes. At this condition, 60% and 35% of hemicellulose and lignin, respectively, were removed, while only 5% of cellulose was lost. The enzymatic digestibility was 76%, meaning that 73% of the glucan present in the initial substrate was recovered as glucose after enzymatic hydrolysis. Also, it was found that the temperature and acid concentration than the reaction time were more strongly related to the compositional removals and enzymatic digestibility.

Studies on the Removal of Protein Soils ( I ) -Characterization of Human Epidermal Stratum Corneum as Model Soils for Detergency Test- (단백질 오염의 세척거동에 관한 연구(I) -세척 시험용 모델 오염으로서의 인체 표피 각질층의 특성-)

  • Lee Jeong Sook;Kim Sung Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 1986
  • The purpose of this study was to investigate the characteristics of human epidermal stratum corneum as protein model soils for detergency test. The stratum corneum was collected by scraping of the skin and purified with solvent. The results obtained were as follows: 1. Purified stratum corneum contained $92.38\%$ of crude protein. 2. In the amino acid compositions, contents of glycine, glutamic acid and serine were high and methionine and cystine were low. They were similar to fibrous $\alpha$-keratin consisted of stratum corneum. Whereas the content of polar amino acids was decreased, that of nonpolar amino acids was increased after enzyme hydrolysis. 3. The hydrolysis of stratum corneum with enzyme increased muck at initial reaction time and levelled off in 4$\~$6 hours. The hydrolysis with enzyme was improved effectively at its optimum temperature and pH. 4. The hydrolysis of stratum corneum with enzyme increased by the addition of surfactants. The order of compatibility with enzyme was in the order of Triton X-100>AOS>LAS.

  • PDF

The Brown-Rot Basidiomycete Fomitopsis palustris Has the Endo-Glucanases Capable of Degrading Microcrystalline Cellulose

  • Yoon, Jeong-Jun;Cha, Chang-Jun;Kim, Yeong-Suk;Son, Dong-Won;Kim, Young-Kyoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.800-805
    • /
    • 2007
  • Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose(Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein(EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein(EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was $100{\mu}g/ml$. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.