• Title/Summary/Keyword: acid strength

Search Result 1,666, Processing Time 0.031 seconds

Comparison of the shear bond strength of self-etching dentin bonding agents to dentin (자가부식형 상아질 접착제와 상아질과의 전단결합강도 비교)

  • Noh, Su-Jeong;Kim, Bu-Sub;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.141-150
    • /
    • 2007
  • The purpose of this study was to ascertain the bonding durability of self-etching dentin bonding agents to dentin by means of shear bonding strength. Several acid-etching dentin bonding system (ESPE Z100) and self-etching dentin bonding systems (DEN-FIL, GRADIA DIRET) were used. The occlusion surface of human molars were ground flat to expose dentin and treated with the etch bonding system according to manufactures instruction and followed by composite resin application. After 24hours of storage at 37$^{\circ}C$, the shear bonding strength of the specimens was measured in a universal testing machine with a 1mm/min crosshead speed. An one-way analysis of variance and the scheffe test were performed to identify significant differences (p<0.05). The bonded interfacial surfaces and treated dentin surfaces were examined using a SEM. Through the analysis of shear bond strength data and micro-structures of dentin-resin interfaces, following results are obtained. In dentin group, the shear bond strength of DEN-FIL showed statistical superiority in comparison to the other groups and followed by ESPE Z100 and GRADIA DIRECT (p<0.05).

  • PDF

A STUDY ON THE BOND STRENGTH OF REPAIRED GLASS IONOMER CEMENTS (Repaired glass ionomer cement의 결합강도에 관한 연구)

  • Seo, Su-Jeong;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.2
    • /
    • pp.347-355
    • /
    • 1996
  • The purpose of this study was to compare the bond strengths of different kinds of glass ionomer cements (GIC), which is recently increasing the clinical application in the field of pediatric dentistry and measure the repaired bond strengths in order to examine the clinical applicabilty of partial repaired cases. By using one kind of the light cured type GIC and three kinds of the chemical cured type GIC, the bond strengths of the followings were compared : unrepaired group as control, repaired conditioning group, which was treated the repaired surface using 25% polyacrylic acid and repaired non-conditioning group without surface treatment. Three point bending test was performed under Universal Testing Machine in order to measure the compressive bond strengths. The results were as follows : 1. Light cured GIC had higher bond strength than chemical cured type GIC in both of repaired and unrepaired groups. 2. In repaired cases, all of the materials decreased the bond strength when compared to the control group. In the light cured type, the bond strength of repaired conditioning group decreased 31.6%, repaired non-conditioning group decreased 40.8%. In chemical cured types, the bond strength of repaired conditining group decreased 11.8%, repaired non-conditioning group decreased 20.9%. 3. All the materials, in the case of the chemical treatment on the repaired surface using 25% polyacrylic acid had higher bond strength than untreated but, lower than control group.

  • PDF

Preparation and Characterization of Modified Natural Rubber Applied to Seismic Isolation Damper Rubber

  • Seong-Guk Bae;Woong Kim;Yu mi Yun;Jin Hyok Lee;Jung-Soo Kim
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.128-135
    • /
    • 2023
  • To improve the adhesive strength of natural rubber (NR) for a seismic isolation damper, citraconic acid-g-NR (CCA-g-NR) was synthesized via the melt grafting of citraconic acid (CCA) onto NR using an azobisisnomerobutyronitrile (AIBN) initiator. Subsequently, the influence of CCA and AIBN concentrations on the graft ratio G/R (%) and graft efficiency G/E (%) of the CCA-g-NR was investigated. The optimum CCA and AIBN concentrations required to achieve the desired G/R (3.49%) and G/E (49.8%) were found to be 7 phr and 0.13 phr, respectively. Additionally, we studied the influence of CCA-g-NR concentration on the mechanical properties (tensile strength, elongation at break, and modulus at 300%), adhesive strength, and cure characteristics of the rubber compound in the seismic isolation damper. As the concentration of CCA-g-NR increased, the elongation at break and adhesive strength of the compound increased, whereas its tensile strength and modulus at 300% decreased. Moreover, as the concentration increased, the maximum torque decreased and the scorch time was delayed to obtain an optimal vulcanization time.

THE EFFECT OF WASHING PHOSPHORIC ACID ETCHANT ON SHEAR BOND STRENGTH OF AN ORTHODONTIC ADHESIVE (인산 부식액의 수세가 교정용 접착레진의 전단결합강도에 미치는 영향)

  • Kim, Hee-Kyun;Lee, Ki-Soo;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.26 no.5 s.58
    • /
    • pp.497-507
    • /
    • 1996
  • The aim of present study in vitro was to evaluate and compare the effects of different washing times of enamels etched with low phosphoric acid solution which makes unsoluble salts and etched but contaminated with saliva on shear bond strength of an orthodontic adhesive to enamel, and to observe the washing effect on the etched enamel surface by scanning electron microscope. All brackets were bonded with Mono-$Lok2^{TM)}$) on the labial surface of extracted human bicuspids after etching with $20w/w\%\;and\;37w/w$ and phosphoric acid solution for 60seconds and then washing for 0,5,10 and 20seconds respectedly. After etching with $37w/w\%$ phosphoric acid solution and contaminating with saliva for 30seconds and then washing for 0,5,20 and 30seconds and re-etching for 10seconds. After 24hours passed in the $37^{\circ}C$ water bath, the shear bond strengths were measured on Universal Test Machine. The data were evaluated and tested by ANOVA and Duncan's multiple range test, and those results were as follows. 1. There was no significant differences between (p>0.05) shear bond strength of bonded brackets with 5, 10, 20seconds washing etched enamel using $37{\%}w/w{\%}$ phosphoric acid solution. 2. The shear bond strength of bonded brackets with $20w/w\%$ phosphoric acid and then washing for 5seconds showed bonded strength durable to occlusal force but its coefficiency score was high and etched surface was not cleaned completely and therefore it was assumed that its clinical application is not applicable. 3. There was no significant differences between (p>0.05) shear bond strengths of bonded brckets with washing for 5seconds etched enamel using $37w/w\%$ phosphoric acid solution and 10,20 seconds washing etched enamel using $20w/w\%$ phosphoric acid solution. 4. The shear bond strength of washing for 5seconds etched enamel which was contaminated with saliva showed sufficient bonded strength durable to occlusal force but its coefficiency score was high and therefore its clinical application was not applicable. 5. After etching, the sample contaminated with saliva showed the sufficient shear bond strength even washing 20seconds without re-etching.

  • PDF

Mechanical Properties of Composites of HDPE and Recycled Tire Crumb (폐타이어 분말과 고밀도 폴리에틸렌 복합재료의 기계적 물성)

  • Kwak, Sung-Bok;Choi, Mi-Ae;Lee, Seong-Jae
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.22-29
    • /
    • 2001
  • For a purpose of recycling of waste tires, composites of 10-60wt% recycled tire crumb blended with high density polyethylene(HDPE) were prepared, and their mechanical properties such as tensile strength, elongation at break, tensile modulus and impact strength were investigated as a function of tire crumb content. Ethylene-acrylic acid(EAA) copolymer was introduced by 10phr as a compatibilizer and the mechanical properties of the composites were measured. For the blend composition of 40wt% tire crumb content showing improved impact strength, the mechanical properties were measured by varying the EAA content of 5-15phr. All blends, whether modified or unmodified, showed a gradual improvement in impact strength as the tire crumb content increased, but the other properties decreased compared with the pure HDPE. In particular, the addition of EAA copolymer to the tire crumb content over 30wt% showed substantial improvement in impact strength. There was no significant effect of tire crumb size on impact strength of the composites.

  • PDF

Viscosity and Wettability of Hyaluronic Acid according to Antimicrobial Supplementation, Ionic Strength, and pH

  • Kho, Hong-Seop;Chang, Ji-Youn;Kim, Yoon-Young;Park, Moon-Soo
    • Journal of Oral Medicine and Pain
    • /
    • v.39 no.3
    • /
    • pp.90-95
    • /
    • 2014
  • Purpose: To investigate viscosity and wettability of hyaluronic acid (HA) solutions according to supplementation of lysozyme and/or peroxidase, and different ionic strength and pH conditions. Methods: Solutions containing HA were prepared using distilled deionized water (DDW) and simulated salivary buffer (SSB) in different conditions. Different concentrations of hen egg-white lysozyme and bovine lactoperoxidase was added into HA solutions. HA solutions with antimicrobials in different ionic strength and pH conditions were prepared. Viscosity was measured using cone-and-plate digital viscometer at six different shear rates and wettability on acrylic resin and Co-Cr alloy was determined by contact angle. Results: The viscosity values of HA dissolved in DDW were decreased in order of HA, HA containing lysozyme, HA containing peroxidase, and HA containing lysozyme and peroxidase. The viscosity values for HA in DDW were decreased as the concentration of lysozyme and/or peroxidase increased. However, the viscosity values for HA in SSB showed no significant changes according to the concentration of lysozyme and/or peroxidase. The viscosity values of HA solutions were inversely proportional to ionic strength and pH. The contact angle of HA solutions showed no significant differences according to tested surface materials, addition of lysozyme and/or peroxidase, and different ionic strength and pH conditions. Contact angles on acrylic resin by HA solutions in all tested conditions were much higher than those by human saliva. Conclusions: The rheological properties of HA supplemented with lysozyme and/or peroxidase in different ionic strength and pH conditions were objectively confirmed, indicating the possibility of HA with lysozyme and/or peroxidase as main components in the development of effective saliva substitutes.

EFFECT OF BENZALKONIUM CHLORIDE ON DENTIN BONDING WITH BPDM/HEMA SYSTEM (Benzalkonium Chloride가 BPDM/HEMA계 접착제의 상아질 접착에 미치는 영향)

  • Kwon, Byung-Gyun;Ahn, Sik-Hwan;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.569-584
    • /
    • 1996
  • The purpose of this study was to elucidate the effect of benzalkonium chloride on tensile bond strength of BPDM/HEMA dentin bonding. One hundred sixty dentin specimens from freshly extracted bovine mandibular incisors were used, and 0, 0.02, 0.1 or 0.5% benzalkonium chloride solution was applied to the dentin specimen with/after phosphoric acid. 32% phosphoric acid was used when the specimens were bonded with One-Step$^{TM}$, a BPDM/HEMA system and 10% was used when bonded with All-Bond$^{(R)}$ 2, a NTG-GMA/BPDM system. Aelitefil$^{TM}$ composite resin was bonded to the pretreated dentin specimen with the use of All-Bond$^{(R)}$ 2 or One-Step$^{TM}$ dentin bonding agent. After the bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, tensile bond strength was measured. The fractured dentin specimens were examined under the scanning electron microscope. The results were as follows : Benzalkonium chloride application after acid-treatment resulted in decrease of dentin bond strength of One-Step$^{TM}$, a BPDM/HEMA system (p>0.05). Benzalkonium chloride application did not exert any influence on dentin bond strength of All-Bond$^{(R)}$ 2, a NTG-GMA/BPDM system (p>0.05). There was no relationship between the concentration or application method of benzalkonium chloride and the dentin bond strength of One-Step$^{TM}$ or All-Bon$^{(R)}$ 2 (p<0.05). On SEM examination of the fractured dentin-resin interface, while mixed failure was prominent in dentin bonding with One-Step$^{TM}$, adhesive and mixed failures were seen together in dentin bonding with All-Bond$^{(R)}$ 2 regardless of the concentration and application method of benzalkonium chloride.

  • PDF

Seasonal Changes of Body Composition and Elasticity between Wild and Cultured Brown Croaker, Miichthys miiuy (자연산 및 양식산 민어, Miichthys miiuy의 체성분 및 탄력의 계절적 변화)

  • Yoon, Ho-Seop;Seo, Dae-Chol;An, Yun-Keun;Choi, Sang-Duk
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.179-185
    • /
    • 2006
  • This study investigated the seasonal changes of body composition and elasticity between wild and cultured brown croaker, Miichthys miiuy. The wild fish were analyzed and compared with cultured fish in moisture, crude protein, lipid, ash and many kinds of amino acids. Cultured fish was higher in moisture content and lower in crude lipid and protein content than those of wild one. The wild fish were more abundant in the total amino acid compositions than those of cultured one. As result E/A ratio there was a little significant differences between wild and cultured. In highly unsaturated fatty acid, EPA (Eicosapentaenoic Acid) and DHA (Docosahexaenoic Acid) content of cultured fish were higher than wild one. On the other hand, the gel strength, max weight and hardness of wild fish were higher than cultured one.

Separation of Low Molecular Weight of Dye from Aqueous Solution Using the Prepared Nano-composite Hollow Fiber Membranes (중공사형 나노복합막 제조를 이용한 수용액으로부터 저분자량의 염료 분리 연구)

  • Park, Cheol Oh;Lee, Sung Jae;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.180-186
    • /
    • 2018
  • The nano-composite membranes were prepared onto the polyvinylidene fluoride (PVDF) hollow fiber membranes through twice dip-coating known layer-by-layer method. For the first coating, poly(vinylsulfonic acid, sodium salt)(PVSA) and Poly(styrene sulfonic acid)(PSSA) were used with varying the concentration and ionic strength (IS) and the poly(ethyleneimine)(PEI) as the second coating material was fixed at 10,000 ppm and IS = 0.3. To characterize the prepared nano-composite membranes, the permeabilities and rejection ratio were measured for each 100 ppm NaCl, $CaSO_4$, $MgCl_2$, and 25 ppm MO aqueous solution. The rejections were increased as the concentrations of coating materials increased. And it was confirmed that the salt rejections for PSSA as the coating material were higher than for PVSA. Typically, the permeability, 1.848 LMH and the rejection for MO 76.3% were obtained at the coating conditions of PSSA 30,000 ppm and I.S = 1.0.

Characteristics on Compressive Strength of Cement Paste with Content of LRM Neutralized by Nitric Acid and Sulfuric Acid (질산 및 황산에 의해 중화된 액상화 레드머드의 첨가량에 따른 시멘트 페이스트의 압축강도 특성)

  • Kang, Suk-Pyo;Lee, Hee-Ra;Kang, Hye-Ju;Lee, Byeong-Gi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.333-340
    • /
    • 2019
  • Red mud is an industrial by-product produced during the manufacturing aluminum hydroxide (Al(OH)3) and aluminum oxide(Al2O3) from Bauxite ores. In Korea, aproximately 2 tons of red mud in a sludge form with 50% moisture content is produced when 1ton of Al2O3 is produced through the Bayer process. Neutralization of red mud will help to reduce the environmental impact caused due to its storage and also lessen significantly the ongoing management of the deposits after closure. It will also open opportunities for re-use of the residue which to date have been prevented because of the high pH. Moreover, attention to liquefied red mud(LRM) that does not require heating and grinding process for recycling is needed. In this paper, characteristics of compressive strength for cement paste with content of LRM neutralized by nitric acid and sulfuric acid. The results showed that compressive strength of cement paste with neutralized LRM is higher than that of cement paste with LRM.