• Title/Summary/Keyword: acid soluble collagen

Search Result 39, Processing Time 0.022 seconds

Characterization of Acid-soluble Collagen from Alaska Pollock Surimi Processing By-products (Refiner Discharge)

  • Park, Chan-Ho;Lee, Jae-Hyoung;Kang, Kyung-Tae;Park, Jae-W.;Kim, Jin-Soo
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.549-556
    • /
    • 2007
  • The study was carried out to examine on the refiner discharge from Alaska pollock as a collagen resource by characterizing biochemical and functional properties of collagen. The refiner discharge from Alaska pollock surimi manufacturing was a good resource for collagen extraction according to the results of total protein, heavy metal, volatile basic nitrogen, collagen content, amino acid composition, and thermal denaturation temperature (TDT). TDT of acid soluble collagen from refiner discharge showed $20.7^{\circ}C$, which was similar to that of collagen from Alaska pollock muscle and was higher than that of collagen from Alaska pollock skin. TDT of acid-soluble collagen from refiner discharge was, however, lower than those of skin collagens from warm fish and land animal. Acid-soluble collagen from refiner discharge of Alaska pollock could be used as a functional ingredient for food and industrial applications according to the results of water and oil absorption capacities, and emulsion properties. In addition, if the thermal stability of the acid-soluble collagens is improved, collagen from refiner discharge from Alaska pollock could be more effectively used.

Extraction and Bleaching of Acid- and Pepsin-Soluble Collagens from Shark Skin and Muscle (상어 껍질과 육으로부터 산 및 Pepsin 가용성 콜라겐의 추출과 탈색조건)

  • Kim, Jae-Won;Kim, Do-Kyun;Kim, Mee-Jung;Kim, Soon-Dong
    • Food Science and Preservation
    • /
    • v.17 no.1
    • /
    • pp.91-99
    • /
    • 2010
  • Extraction and bleaching of citric acid- and pepsin-soluble collagens (ASC and PSC, respectively) from shark (Isurus oxyrinchus) skin and muscle were investigated. The optimal sodium hydroxide concentration for extraction was 0.3 M and the optimal treatment time for removal of foreign material was 9 h. The optimal sodium hypochlorite level for bleaching of shark skin was 0.48% (w/v), and sodium hypochlorite was a better bleaching agent than acetone, hydrogen peroxide (10%, v/v), sodium sulfite (0.48%, w/v), sodium thiosulfate (0.48%, w/v), or sodium metabisulfite (0.48%, w/v). Optimal citric acid concentration and extraction time for ASC were 0.3 M and 72 h, respectively, whereas optimal conditions for extraction of PSC were treatment with 0.1 M citric acid containing 0.1% (w/v) pepsin for 24 h. Protein contents in ASSC (acid-soluble shark skin collagen), ASMC (acid-soluble shark meat collagen), PSSC (pepsin-soluble shark skin collagen), and PSMC (pepsin-soluble shark meat collagen) were 88.66%, 83.09%, 90.33%, and 84.81% (on a dry weight basis), respectively, similar to that of commercial marine collagen (88.86%). Net collagen contents of ASSC, ASMC, PSSC, and PSMC, calculated from hydroxyproline levels, were 70.31%, 25.70%, 83.09%, and 32.94%, respectively. The yields of freeze-dried ASSC, ASMC, PSSC,and PSMC were 57.22%, 53.85%, 23.28%, and 20.61%.

The Flow Behavior of Skin Collagen (피부조직 콜라겐의 유동 특성)

  • Kim, Young-Ho;Park, Eun-Ji;Yang, Ryung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.576-581
    • /
    • 1995
  • To obtain the basic information for the effective use of collagen, the flow behavior of collagen extracted from skin tissue was studied. The viscosity of collagen varied with sex, age and the kinds of collagen by extraction method. Regardless of the kinds of collagen, the viscosity of collagen extracted from $6{\sim}12$ week old rat was relatively high. In case of the same age, the viscosity showed higher in female than in male rat and in acid soluble collagen than in insoluble collagen. The solution of the collagen showed the characteristics of Bingham plastic and thixotropic fluid, and the viscosity varied distinctly with temperature, pH, ethanol concentration and collagen concentration. As collagen concentration increased to 6%, the consistency of acid soluble- and insoluble collagen showed a tendency to increase linearly(r = 0.972 for acid soluble collagen, r = 0.957 for insoluble collagen). In that range of collagen concentration, the increasing velocity of consistency was higher in acid soluble collagen than in insoluble collagen. The consistency of collagen solution was decreased according to temperature rising. In case of acid soluble collagen, the consistency is decreased abruptly between $30{\sim}40^{\circ}C$. According to pH variation, the consistency of acid soluble collagen showed biphasic phenomenon, though the consistency of insoluble collagen was found not to be influenced by pH. The consistency of acid soluble- and insoluble collagen according to ethanol concentration showed high between $40{\sim}60%$ of ethanol concentration.

  • PDF

Isolation and characterization of acid-soluble bluefin tuna (Thunnus orientalis) skin collagen

  • Tanaka, Teruyoshi;Takahashi, Kenji;Tsubaki, Kazufumi;Hirata, Maika;Yamamoto, Keiko;Biswas, Amal;Moriyama, Tatsuya;Kawamura, Yukio
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.4
    • /
    • pp.7.1-7.8
    • /
    • 2018
  • In this study, we isolated and characterized the acid-soluble skin collagen of Pacific bluefin tuna (PBT, Thunnus orientalis). The PBT skin collagen was composed of two ${\alpha}$ chains (${\alpha}1$ and ${\alpha}2$) and one ${\beta}$ chain. The denaturation temperature of PBT collagen was low although it was rich in proline and hydroxyproline. The primary structure of PBT skin collagen was almost identical to that of calf and salmon skin collagen; however, it differed with respect to the epitope recognition of the antibody against salmon type I collagen. These results suggest that the primary structure of skin collagen was highly conserved among animal species, although partial sequences that included the epitope structure differed among collagens.

The Effect of Ascorbic Acid on the Enzyme Reaction in Pyridinoline Formation during Soluble Collagen Maturation (비타민 C가 가용성 콜라겐의 성숙과정에서 Pyridinoline 생성 효소계에 미치는 영향)

  • 김미향
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.2
    • /
    • pp.305-312
    • /
    • 1998
  • Normal tensile strength in collagen fibrils is due to intermolecular and intramolecular crosslinks which are known to be altered in aging. Pyridinoline, a mature crosslink which is stable and nonreducible, is derived from two hydroxyallysine and one hydroxylysine residues of collagen fibrils. The excess formation of pyridinoline in collagen is associated with making the tissue stiffer, less soluble and less digestible by enzymes. Lysyl oxidase is the enzyme that initiates the biosynthesis or crosslinks in collagen by catalyzing the oxidative deamination of the lysyl and hydroxylysyl residues in these molecules, and its activity is inhibited by $\beta$-aminopropionitrile(BAPN). Our previous work demonstrated that the pyridinoline content of bone collagen significantly was increased during incubation for 5 weeks at 37$^{\circ}C$ invitro, but it was diecrased by the addition of ascorbic acdi(AsA). In this study, we clarified the specific action of AsA in aging process in vitro enzymatic reaction.

  • PDF

The Effect of Ascorbic Acid on the Changes in Amounts of Pyridinoline form Bone Collagen during In vitro Aging (In vitro Aging에 있어서 콜라겐 성숙가교의 변화에 대한 비타민 C의 영향)

  • 김미향
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.501-506
    • /
    • 1997
  • As pyridinoline is one of the predominant cross-lins in a mature collagen, pyridinoline formation may be an essential step during the growth process to obtain normal mechanical strength in collagen fibrils. However, the excess formation of pyridinoline in collagen will probably make the tissue stiffer, less soluble and less digestible by enzymes. We investigated the changes of pyridinoline of bone collagen and the role of ascforbic acid(AsA) on the formation of pyridinoline. The pyridinoline content of bone collagen significantly increased during incubation for 1~5 weeks at 37$^{\circ}C$ in vitro. The addition of AsA decreased pyridinoline to half the amount found in controls with 5 week incubation. When dehydroascorbic acid(DHA) and L-2, 3-diketogulonic acid (DKG), the oxidative products of AsA, were supplemented to bone collagen solution instead of AsA, the content of pyridinoline in bone collagen was about 80% or 70% that of controls, respectively. These results suggest that pyridinoline content decreases by the addition of AsA in vitro. Furthermore, it was shown that AsA in oxidized from also affected the formation of pyridinoline.

  • PDF

Antioxidant and Antimicrobial Activities of Shark Collagens, and Inhibitory Actions on Elastase and Tyrosinase (상어 콜라겐의 항산화능, 항균성, Elastase 및 Tyrosinase 저해활성)

  • Kim, Jae-Won;Kim, Do-Kyun;Park, Jin-Soo;Lee, Ye-Kyung;Beik, Kyung-Yean;Kim, Soon-Dong
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.419-426
    • /
    • 2009
  • The antioxidant and antimicrobial effects of acid-soluble and pepsin-solubilizable shark (Isurus oxyrinchus) collagens (SC) (ASSC: acid-soluble shark skin collagen, ASMC: acid-soluble shark meat collagen, PSSC: pepsin-solubilizable shark skin collagen, PSMC: pepsin-solubilizable shark meat collagen) and standard marine collagen (STMC) as materials, and the ability of these materials to inhibit tyrosinase and elastase, were investigated. The electron-donating ability of SC ($1{\sim}5\;g/mL$) was $14.91{\sim}17.21%$, which was $3.0{\sim}3.6$-fold higher than that of STMC at the same concentration. Also, the SOD(superoxide dismutase)-like activity of SC (5.80 mg/mL) was $4.67{\sim}37.28%$, thus $3.0{\sim}3.6$-fold greater than that of STMC. The MIC values of SC against Staphylococcus aureus and Salmonella enteritidis were $5{\mu}g$/disc, which were remarkably lower than that of STMC ($200{\mu}g$/disc). There was no antimicrobial activity against Escherichia coli in STMC, but the MIC against E. coli was $200{\mu}g$/disc for acid-soluble SC and $100{\mu}g$/disc for pepsin-solubilizable SC. The inhibition of tyrosinase by SC (3-5 mg/mL) was $58.95{\sim}98.16%$, $3.34{\sim}3.74$-fold higher than that of STMC ($17.67{\sim}26.25%$). Also, elastase inhibition by SC (at 1 mg/mL) was $53.33{\sim}80.0%$, $1.1{\sim}4.0$-fold greater than that of STMC. These results indicated that shark collagens may be valuable new functional materials owing to their antioxidant and antimicrobial properties, and because the inhibitory activities against elastase and tyrosinase are better than those of standard marine collagen.

Extraction and characterization of pepsin-soluble collagen from different mantis shrimp species

  • Hiransuchalert, Rachanimuk;Oonwiset, Nakaweerada;Imarom, Yolrawee;Chindudsadeegul, Parinya;Laongmanee, Penchan;Arnupapboon, Sukchai
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.12
    • /
    • pp.406-414
    • /
    • 2021
  • The objective of this study was to investigate the yield and characteristics of collagen protein extracted from the muscle of four different species of mantis shrimp: Miyakella nepa, Harpiosquilla harpax, Erugosquilla woodmasoni, and Odontodactylus cultrifer. Mantis shrimp muscle was extracted by using a pepsin-solubilization technique, with 0.5 M acetic acid and 5% pepsin enzyme. The highest collagen yield was from M. nepa muscle (0.478 ± 0.06%), which was significantly greater (p < 0.05) than that from H. harpax, O. cultrifer, and E. woodmasoni (0.313 ± 0.03%, 0.123 ± 0.02%, and 0.015 ± 0.00%, respectively). The freeze-dried collagen appeared as thin fibers, and formed an opaque film. The pepsin-soluble collagen (PSC) from four mantis shrimp species was analyzed by gel electrophoresis. The results showed that all species of mantis shrimp contained type I collagen, consisting of β, α1, and α2 subunits with average molecular weights of 250, 145, and 118 kDa, respectively. The study of the solubility of collagen showed that, for NaCl, collagen had the highest relative solubility in 2% NaCl (80.20 ± 4.95%). In contrast, the solubility decreased at higher NaCl concentrations. However, in terms of pH, collagen had the highest relative solubility at pH 3 (91.32 ± 5.14%), and its solubility decreased at higher pH. FT-IR spectroscopy was used to compare the collagen with a model compound. Five wavenumbers in the spectrum for model collagen were identified: Amide A (3,406-3,421 cm-1), amide B (2,916-2,940 cm-1), amide I (1,639-1,640 cm-1), amide II (1,539-1,570 cm-1), and amide III (1,234-1,250 cm-1).

Characterization of Physicochemical Properties of Collagen from Shark (Isurus oxyrinchus) Skin (청상아리(Isurus oxyrinchus) 껍질 콜라겐의 물리 화학적 특성)

  • Park, Soon-Hyung;Kim, Tae-Wan;Kim, Seon-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.574-579
    • /
    • 2009
  • Acid- and pepsin-solubilized collagens were extracted from the skin of shark (Isurus oxyrinchus) and their physicochemical properties were characterized by amino acid analysis, SDS-PAGE, the composition of collagen types, solubility and denaturation temperature. Acid - and pepsin-solubilized collagens from shark skin had an imino acid of 188.8 and 186.2 residues/1,000 amino acids, respectively. SDS-PAGE showed two different${\alpha}$ chains ($\alpha1$ and $\alpha2$) and $\beta$-component. The component ratio of type I and V was 10:1, and the type III was not found. Solubility of acid-soluble collagen was low in the range of pH 6.0 to pH 11.0. On the other hand, pepsin-solubilized collagen showed a low solubility in the range of pH 7.0-9.0. Temperature for denaturation of acid- and pepsin-solubilized collagens were $25^{\circ}C$ and $27^{\circ}C$, respectively.

Physicochemical and histopathological parameters of broilers with dorsal cranial myopathy

  • Ana Clara Longhi Pavanello;Fernanda Jessica Mendonca;Thalita Evani Silva Oliveira;Guilherme Bau Torezan;Giovana Wingeter Di Santis;Adriana Lourenco Soares
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.953-961
    • /
    • 2023
  • Objective: This study aimed to investigate the effect of dorsal cranial myopathy (DCM) on chicken meat quality. Methods: Sixty-six Ross 308 AP broilers, 47 days old, of both sexes, weighing about 3.51 kg, were slaughtered according to standard industrial practices, and evaluated for meat color, pH, chemical composition, collagen content, fatty acid profile, and histopathological parameters. Comparisons between normal and DCM-affected meat were performed using Student's t-test at the 5% significance level. Results: Histological analysis of muscle tissues affected by DCM showed myofiber degeneration, proliferation of inflammatory cells, fibroplasia, and necrosis with fibrosis. DCM samples had lower protein content and higher moisture, ash, insoluble collagen, total collagen, and pH. DCM-affected meat was redder and more yellowish. There were no differences in lipid or soluble collagen contents between groups. DCM-affected meat had higher percentages of arachidonic acid (C20:4n-6) and eicosapentaenoic acid (C20:5n-3). Conclusion: This study revealed that DCM-affected meat exhibits considerable changes in quality parameters.