• Title/Summary/Keyword: acid resistance of concrete

Search Result 114, Processing Time 0.03 seconds

Evaluation of Chloride and Chemical Resistance of High Performance Mortar Mixed with Mineral Admixture (광물성 혼화재료를 혼입한 고성능 모르타르의 염해 및 화학저항성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Choi, Sung-Yong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.618-625
    • /
    • 2018
  • With the passing of time, exposed concrete structures are affected by a range of environmental, chemical, and physical factors. These factors seep into the concrete and have a deleterious influence compared to the initial performance. The importance of identifying and preventing further performance degradation due to the occurrence of deterioration has been greatly emphasized. In recent years, evaluations of the target life have attracted increasing interest. During the freezing-melting effect, a part of the concrete undergoes swelling and shrinking repeatedly. At these times, chloride ions present in seawater penetrate into the concrete, and accelerate the deterioration due to the corrosion of reinforced bars in the concrete structures. For that reason, concrete structures located onshore with a freezing-melting effect are more prone to this type of deterioration than inland structures. The aim of this study was to develop a high performance mortar mixed with a mineral admixture for the durability properties of concrete structures near sea water. In addition, experimental studies were carried out on the strength and durability of mortar. The mixing ratio of the silica fume and meta kaolin was 3, 7 and 10 %, respectively. Furthermore, the ultra-fine fly ash was mixed at 5, 10, 15, and 20%. The mortar specimens prepared by mixing the admixtures were subjected to a static strength test on the 1st and 28th days of age and degradation acceleration tests, such as the chloride ion penetration resistance test, sulfuric acid resistance test, and salt resistant test, were carried out at 28 days of age. The chloride diffusion coefficient was calculated from a series of rapid chloride penetration tests, and used to estimate the life time against corrosion due to chloride ion penetration according to the KCI, ACI, and FIB codes. The life time of mortar with 10% meta kaolin was the longest with a service life of approximately 470 years according to the KCI code.

Durability characteristics of recycled aggregate concrete

  • Saravanakumar, Palaniraj;Dhinakaran, Govindasamy
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.701-711
    • /
    • 2013
  • People started to replace natural aggregate with recycled aggregate for a number of years due to disposal problem and certain other potential benefits. Though there are number of drawbacks with use of recycled aggregates like lesser modulus of elasticity, low compressive strength, increase in shrinkage, there are results of earlier studies that use of chemical and mineral admixtures improves the strength and durability of recycled concrete. The use of recycled aggregate from construction and demolition wastes is showing prospective application in construction as alternative to natural aggregates. It conserves lot of natural resources and reduces the space required for the landfill disposal. In the present research work, the effect of recycled aggregate on strength and durability aspects of concrete is studied. Grade of concrete chosen for the present work is M50 (with a characteristic compressive strength of 50 MPa). The recycled aggregates were collected from demolished structure with 20 years of age. Natural Aggregate (NA) was replaced with Recycled Aggregate (RA) in different percentages such as 25, 50 and 100 to understand its effect. The experiments were conducted for different ages of concrete such as 7, 14, 28, 56 days to assess the compressive and tensile strength. Durability characteristics of recycled aggregate concrete were studied with Rapid chloride penetration test (as per ASTMC1202), sorptivity test and acid test to assess resistance against chloride ion penetration, capillary suction and chemical attack respectively. Mix design for 50 MPa gives around 35 MPa after replacing natural aggregate with recycled aggregate in concrete mix and the chloride penetration range also lies in moderate limit. Hence it is understood from the results that replacement of NA with RA is very much possible and will be ecofriendly.

Evaluation of Resistance to Biochemical Corrosion by Simulation Test (시뮬레이션 시험에 의한 생화학적 부식 저항성 평가)

  • Kim, Gyu-Yong;Lee, Eui-Bae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.903-906
    • /
    • 2008
  • To analyze the growth of SOB (Thiobacillus novellus) and biochemical corrosion of concrete, simulation test method and device were developed. And two types of simulation tests were conducted according to a transplant method and a concentration of H2SO4. As a result, the SOB growth in distinct manners and antibiosis of specimen were observed. In the case of the specimens indirectly transplanted with SOB through culture solution submersion at a hydrogen sulfide level of 120ppm, the rapid activation of SOB and the resulting sulfuric acid production were observed. However, SOB were shown to grow rapidly and then die out in a relative short period of time. Meanwhile, in the case of the specimens directly transplanted with SOB at a hydrogen sulfide level of 50ppm, the long-term growth of SOB was possible, but the production of sulfuric acid by SOB did not progress. In the case of the antibiotic metal-mixed specimens, SOB with destroyed cell membranes and internal organizations were observed.

  • PDF

Durability assessments of limestone mortars containing polypropylene fibres waste

  • Bendjillali, Khadra;Boulekbache, Bensaid;Chemrouk, Mohamed
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The main objective of this study is the assessment of the ability of limestone mortars to resist to different chemical attacks. The ability of polypropylene (PP) fibres waste used as reinforcement of these concrete materials to enhance their durability is also studied. Crushed sand 0/2 mm which is a fine limestone residue obtained by the crushing of natural rocks in aggregates industry is used for the fabrication of the mortar. The fibres used, which are obtained from the waste of domestic plastic sweeps' fabrication, have a length of 20 mm and a diameter ranging between 0.38 and 0.51 mm. Two weight fibres contents are used, 0.5 and 1%. The durability tests carried out in this investigation included the water absorption by capillarity, the mass variation, the flexural and the compressive strengths of the mortar specimens immersed for 366 days in 5% sodium chloride, 5% magnesium sulphate and 5% sulphuric acid solutions. A mineralogical analysis by X-ray diffraction (XRD) and a visual inspection are used for a better examination of the quality of tested mortars and for better interpretation of their behaviour in different solutions. The results indicate that the reinforcement of limestone mortar by PP fibres waste is an excellent solution to improve its chemical resistance and durability. Moreover, the presence of PP fibres waste does not affect significantly the water absorption by capillarity of mortar nether its mass variation, when exposed to chloride and sulphate solutions. While in sulphuric acid, the mass loss is higher with the presence of PP fibres waste, especially after an exposure of 180 days. The results reveal that these fibres have a considerable effect of the flexural and the compressive behaviour of mortar especially in acid solution, where a reduction of strength loss is observed. The mineralogical analysis confirms the good behaviour of mortar immersed in sulphate and chloride solutions; and shows that more gypsum is formed in mortar exposed to acid environment causing its rapid degradation. The visual observation reveals that only samples exposed to acid attack during 366 days have showed a surface damage extending over a depth of approximately 300 ㎛.

A Study on the Chemical Resistance Performance of Injection Type Leakage Repair Materials used in Crack Parts of Concrete Structures under the Contaminated Groundwater Environment (오염된 지하수 환경 하의 콘크리트 구조물 균열부위에 사용되는 주입형 누수보수재료의 화학저항성능 시험평가 연구)

  • Kim, Soo-Yeon;Yoo, Jae-Yong;Kim, Byung-Il;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.411-419
    • /
    • 2019
  • Underground concrete structures are constructed under a geographical environment called underground and exposed to various environments that promote deterioration. Among them, groundwater promotes deterioration of underground concrete structures due to contaminated water from the ground. In this study, the chemical resistance performance test evaluation of five different receptors for a total of 15-type leakage repair materials of five series was conducted to determine the chemical stability of the leakage repair material used in the crack area. The results show a general increase and decrease in most chemical receptors, but the biggest increase and decrease was shown in acrylic systems, which were found in sodium chloride and sodium hydroxide, and epoxy was found in hydrochloric acid. The cement system is showing a lot of increase and decrease in sodium chloride. It is expected that the results of these studies will be used as a basis for chemical stabilization in the development of new materials.

Properties of Polymer Cement Mortars under Combined Cures (복합양생에 의한 폴리머 시멘트 모르타르의 성질)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.667-675
    • /
    • 2006
  • Concrete is much more easily damaged by various parameters than by the only one and performance reducing mechanism grows more complicated in that condition. In addition, the factors which really act in concrete structure tend to be activated in turn and the degradation of concrete is very rapidly progressed. The purpose of this study is to evaluate the properties of polymer cement mortars under combined cures. The polymer cement mortars are prepared with various polymer types, polymer-cement ratios and cement-fine aggregate ratio, and tested for compressive and flexural strengths, accelerated carbonation, chloride ion penetration and acid resistance test, and freezing-thawing test. The properties of polymer cement mortars under combined cures is discussed. From the test results, polymer cement mortars have superior strengths compared with plain cement mortar under combined cures. The strengths of polymer cement mortars are markedly increased at curing condition II and V, however strengths are not improved at curing condition I and IV irregardless of polymer types. The carbonation and chloride ion penetration depths of polymer cement mortars tend to decrease in curing conditions, III-C, IV-B, V-A order, and decrease with increasing polymer cement ratios. It is concluded that polymer cement ratio of 10 to 15% are considered optimum for the preparation of such polymer cement mortars.

Strength and Durability of Mortar Made with Plastics Bag Waste (MPBW)

  • Ghernouti, Youcef;Rabehi, Bahia
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.145-153
    • /
    • 2012
  • The aim of this study is to explore the possibility of re-cycling a waste material that is now produced in large quantities, while achieving an improvement of the mechanical properties and durability of the mortar. This study examines the mechanical properties and the durability parameters of mortars incorporating plastics bag wastes (PBW) as fine aggregate by substitution of a variable percentage of sand (10, 20, 30 and 40 %). The influence of the PBW on the, compressive and flexural strength, drying shrinkage, fire resistance, sulfuric acid attack and chloride diffusion coefficient of the different mortars, has been investigated and analyzed in comparison to the control mortar. The results showed that the use of PBW enabled to reduce by 18-23 % the compressive strength of mortars containing 10 and 20 % of waste respectively, which remains always close to the reference mortar (made without waste). The replacement of sand by PBW in mortar slows down the penetration of chloride ions, improves the behavior of mortars in acidic medium and improves the sensitivity to cracking. The results of this investigation consolidate the idea of the use of PBW in the field of construction.

Performance Evaluation of Concrete Bench Flume Using Industrial by Products (산업부산물을 이용한 콘크리트 벤치플룸의 성능평가)

  • Jae-Ho Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.276-281
    • /
    • 2023
  • Water pipes manufactured using existing Portland cement suffer from the problem of rapid deterioration and reduced durability due to the hydration product of cement being vulnerable to acids. Therefore, in this study, water pipes were manufactured using slag and fly ash, which are industrial by-products from various industries, and their characteristics were analyzed. As a result of the experiment, slump in unhardened concrete tended to increase due to the ball bearing action of fly ash, and the amount of air was reduced due to unburned coal, indicating that measures for frost resistance were needed. In addition, the initial strength of the compressive strength was increased through steam curing, and the results were equal to or better than OPC when mixing more than 50 % of slag. The acid resistance results showed that the mass reduction rate was less than 5 %, showing excellent durability performance, and the bending failure load of the water pipe also exceeded the KS standards, so it is judged to be commercializable.

Durability and Crack Control of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 혼입한 콘크리트의 균열제어 및 내구성)

  • Yun, Hyun-Do;Yang, Il-Seung;Kim, Do-Su;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.57-64
    • /
    • 2006
  • The crack presented in concrete structures causes a structural defect, the durability decrease, and external damages etc. Therefore, it is necessary to improve durability through the effort to control the crack. Fluosilicic acid($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicates prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicates to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.0{\sim}2.0%$ of adding ratio of fluosilicate salt based inorganic compound. To evaluate correlation of concrete strength and adding ratio of fluosilicate salt based inorganic compound, the tests were performed about design strength(21, 24, 27 MPa) with 0.5% of adding ratio of fluosilicate salt based inorganic compound. Applications of fluosilicate salt based inorganic compound to reduce cracks resulted from plastic and drying shrinkage, to improve durability are presented in this paper. Durability was evaluated as neutralization, chloride ion penetration depth, freezing thawing resistant tests and weight loss according reinforcement corrosion. It is ascertained that the concrete added fluosilicate salt based inorganic compound showed m ability to reduce the total area and maximum crack width significantly as compared non-added concrete. In addition, the durability of concrete improved because of resistance to crack and watertightness by packing role of fluosilicate salt based inorganic compound obtained and pozzolanic reaction of soluble $SiO_2$ than non-added concrete.

A fundamental study on the sulphate-resistant mortar using waste glass fine powder and meta-kaolin according to various fine aggregates (잔골재 종류에 따른 폐유리 미분말 및 메타카올린을 사용한 내황산염 모르타르에 관한 기초적 연구)

  • Jeong, Dongwhan;Park, Junhui;Ahn, Taeho;Park, Yeongsik;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The degradation of the concrete due to deterioration factors, such as corrosion of steel bars, cracks and structural strength of reinforced concrete structures, is a social problem. Especially, concrete structures constructed in seawater, underground water, waste water treatment facilities and sewerage are subject to chemical attack by acid and sulphate. Therefore, this study was conducted to compare sulfated glass and fine aggregate of slag using waste glass fine powder and meta kaolin. The results showed that the slag fine aggregate showed better sulfate resistance than the river sand, and the fine powder of waste glass showed the best performance at 3 % displacement.