• 제목/요약/키워드: acid production

검색결과 7,098건 처리시간 0.028초

음식물쓰레기를 이용한 젖산 생산의 최적화 (Optimization of Lactic Acid Production from Kitchen Refuses)

  • 이백석;윤현희;김은기
    • KSBB Journal
    • /
    • 제16권2호
    • /
    • pp.207-211
    • /
    • 2001
  • Statistical experimental design methods were employed to select the cultivation factors influencing latic acid production during the fermentation of kitchen refuses. Working volume and pH swings were identified as the main factors affecting lactic acid production. Optimum pH swing was pH 7.8 and working volume was 125 mL in a 250 mL flask. Under optimum condition, lactic acid was produced at 21.8 g/L, which was 6.2 times higher than produced during uncontrolled fermentation.

  • PDF

토양으로부터 분리한 곰팡이에 의한 $\gamma$-Linolenic Acid생산 (Production of $\gamma$-Linolenic Acid by Mold Isolated from Soils)

  • 오광연;이철우
    • 한국식품영양학회지
    • /
    • 제8권1호
    • /
    • pp.13-16
    • /
    • 1995
  • 120 fungal strains producing Y-linolenic acid (GLA) were isolated from 100 soil samples, and among these, the most suitable one for the production of GLA was identified as Fusarium sp. JK-02. The content of total lipid and dry cell weight was 620mg 1100m1 and 63.5mg 1100m1, respectively. The production of GLA was 10.2% of the total fatty acids.

  • PDF

Stimulation of Cephalosporin C Production by Acremonium chrysogenum M35 with Fatty Acids

  • Kim Jong-Chae;Kang Seong-Woo;Lim Jung-Soo;Song Yoon-Seok;Kim Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.1120-1124
    • /
    • 2006
  • Supplementation with rice oil and its major components (oleic acid and linoleic acid) was found to have a significant influence on cephalosporin C (CPC) production and cell growth by A. chrysogenum M35 in shake flask cultures. Five percent (v/v) rice oil had the most robust effect and 5% (v/v) oleic acid was the second most efficient on cell growth, whereas 3% (v/v) linoleic acid was found to be optimal for CPC production. Rice oil, oleic acid, and linoleic acid also significantly improved the rates of glucose consumption. When glucose was almost consumed, CPC production was initiated and, on the addition of rice oil, lipase activity increased steadily to 1.56 U/ml for 4 days. These results suggest that rice oil and fatty acids are used as carbon source to produce CPC by A. chrysogenum M35. Moreover, a mixture, composed of 40% (v/v) oleic acid and 60% (v/v) linoleic acid, had the strongest stimulatory effect on CPC production, due to a synergistic effect of the two fatty acids. Consequently, the maximum CPC titer (7.44 g/l) was improved about 4.5-fold.

Effects of Homogentisic Acid and Natural Products Derived from Pinellia ternata on Secretion, Production and Gene Expression of MUC5AC Mucin from Cultured Airway Epithelial Cells

  • Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • 제23권1호
    • /
    • pp.29-34
    • /
    • 2017
  • In this study, we investigated whether adenosine, adenine, uridine and homogentisic acid derived from Pinellia ternata affect the secretion, production and gene expression of MUC5AC mucin from airway epithelial cells. Confluent NCI-H292 cells were pretreated with adenosine, adenine, uridine or homogentisic acid for 30 min and then stimulated with PMA (phorbol 12-myristate 13-acetate) for 24 h. The MUC5AC mucin gene expression, mucin protein production and secretion were measured by RT-PCR and ELISA, respectively. The results were as follows: (1) Adenine and homogentisic acid decreased PMA-induced MUC5AC mucin gene expression, although adenosine and uridine did not affect the mucin gene expression; (2) Adenosine, adenine, uridine and homogentisic acid inhibited PMA-induced MUC5AC mucin production; (3) Homogentisic acid inhibited the secretion of MUC5AC mucin from NCI-H292 cells. These results suggest that, among the four compounds examined, homogentisic acid showed the regulatory effect on the steps of gene expression, production and secretion of mucin, by directly acting on airway epithelial cells.

Mortierella alpina를 이용한 아라키돈산의 생산에서 유기질소원의 선정과 배양 조건의 최적화 (Selection of organic Nitrogen Source and Optimization of Culture Conditions for the Production of Arachidonic Acid from Mortierella alpina)

  • 유연우;하석진;박장서
    • KSBB Journal
    • /
    • 제19권1호
    • /
    • pp.78-82
    • /
    • 2004
  • 곰팡이인 Mortierella alpina DSA-12를 이용한 arachidonic acid의 생산을 위한 유기질소원의 선정과 배양 조건의 결정에 연구를 수행하였다. Corn steep powder (CSP)를 원료의 가격과 arachidonic acid의 생산을 기준으로 유기질소원으로 선정하였다. 탄소원으로 glucose와 질소원으로 CSP를 사용한 경우에 최적의 C/N ratio는 15-17 범위이다. Arachidonic acid의 생산을 위한 최적의 배양조건은 $25^{\circ}C$에서 500 rpm의 교반과 0.5 vvm의 통기이며, 이 때 50 g/L의 glucose와 18 g/L의 CSP로부터 21.8 g/L의 균사체량에 10.2 g/L의 총 지질을 얻을 수 있었으며, arachidonic acid의 농도는 3.70 g/L이었다. 500 L의 발효조에서 0.5 vvm과 200 rpm의 교반으로 실험을 수행한 결과 19.8 g/L의 균사체량과 9.1 g/L의 총 지질 및 3.67 g/L의 arachidonic acid를 얻었다. 이러한 결과는 bench-scale의 발효조에서도 질소원으로 CSP를 이용하여 arachidonic acid의 생산이 가능함을 보여주었다.

In vivo Methane Production from Formic and Acetic Acids in the Gastrointestinal Tract of White Roman Geese

  • Chen, Yieng-How;Wang, Shu-Yin;Hsu, Jenn-Chung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권7호
    • /
    • pp.1043-1047
    • /
    • 2009
  • Three experiments were conducted to determine the conversion rate of formic and acetic acids into methane in the gastrointestinal tracts of geese. In experiment I, two sets of two 4-month-old male White Roman geese were allocated to one of two treatment groups. Each set of geese was inoculated either with formic acid or with phosphate buffer solution (PBS). After the acid or the PBS was inoculated into the esophagi of the geese, two birds from each treatment were placed in a respiratory chamber as a measurement unit for 4 h in order to determine methane production rate. In experiment II and III, 6- and 7-wk-old male White Roman goslings were used, respectively. Birds were allocated to receive either formic acid or PBS solution injected into the ceca in experiment II. Acetic acid or PBS solution injected into the cecum were used for experiment III. After either the acids or the PBS solution were injected into the cecum, two birds from each treatment were placed in a respiratory chamber as a measurement unit for 3 h; each treatment was repeated 3 times. The results indicated that formic acid inoculated into the oesophagi of geese was quickly converted into methane. Compared with the PBS-injected group, methane production increased by 5.02 times in the formic acid injected group (4.32 vs. 0.86 mg/kg BW/d; p<0.05). Acetic acid injected into the ceca did not increase methane production; conversely, it tended to decrease methane production. The present study suggests that formic acid may be converted to methane in the ceca, and that acetic acid may not be a precursor of methane in the ceca of geese.

L-Gutamic acid희효생산에 관한 연구(제일보) 절간고구마 산분해액을 이용한 L-Glutamic acid 생산 (Studies on the L-Glutamic acid Fermentation(Part I ) L-Glutamic acid Production from the Hydrolyzate of Sliced and Dried Sweet Potatoes)

  • 양한철;최용진;양한우;성하진
    • 한국미생물·생명공학회지
    • /
    • 제3권1호
    • /
    • pp.7-15
    • /
    • 1975
  • The possibilities of utilizing acid-hydrolyzate of "Sliced and dried sweet potatoes" as a carbon source for the microbial production of L-Glutamic Acid(L-GA) with Micrococcus glutamicus were investigated and the results showed as follows: 1) The highest hydrolysis rate, 74.6% of the reducing sugar based on the weight of dry matter, was obtained when the sweet potatoes were hydrolyzed with 0.8% of HCI at 2.0kg/$cm^2$ for 30 minutes. The most favorable hydrolyzate for the growth of the cells, however, was found to be the one obtained by treating the sweet potatoes with 0.5% HCI at 2. 0kg/$cm^2$ for 10 minutes. Reducing sugar content of the hydrolyzate was 10% as glucose. 2) Biotin content of the hydrolyzate was 25$\mug$/1 and it was proved to be excess in amount for the L-GA production. 3) The effects of addition of antibiotics, alcohols and fatty acid esters on the L-GA production were tested in the biotin excess medium. The production of L-GA was most increased to 32.5g/l with the addition of 10 I. U. of penicillin per ml. to the culture medium at 4 hours after inoculation. But the addition of alcohols, especially fatty acid esters, showed no significant effects. 4) Among the organic nutrients tested. " Gluten acid hydrolyzate" greatly enhanced the production of L-GA adding it's concentration of 1.0% to the medium. 5) The maximum production of L-GA resulted in 35g/1 when the cells were grown for 48 hours in the hydrolyzate medium supplemented with 1.0% of "Gluten acid hydrolyfate" and with 10 I. U. of penicillin per ml added at 4 hours after cultivation.

  • PDF

Aspergillus niger를 이용한 유청으로부터 구연산의 생산에 있어서 온도와 pH의 영향 (Effects of Temperature and pH on the Production of Citric Acid from Cheese Whey by Aspergillus niger)

  • 이정훈;윤현식
    • 한국균학회지
    • /
    • 제27권6호
    • /
    • pp.383-385
    • /
    • 1999
  • Cheese 제조시 부산물로 생성되는 whey를 배지로 사용하여 Aspergillus niger를 이용하여 citric acid를 생산하는데 영향을 미치는 여러 가지 요인 중 중요한 요인인 온도와 pH의 영향에 대하여 고찰하였다 15일간 27, 30, 33, $36^{\circ}C$와 pH 2, 3, 4, 5에서 각각 배양하면서 소비된 lactose의 양과 생산된 citric acid의 양을 측정하였다. 생산된 citric acid의 최대 농도는 33.9 g/l(구연산 생산에 쓰여진 유당을 기준으로 할 때 68.26%)이었으며, shaking speed는 citric acid 생산에 직접 영향을 주기보다는 pellet 형성시 그 형태에 영향을 미치는 것으로 나타났다. 배양 온도가 $33^{\circ}C$, pH는 3일때 가장 많은 양의 citric acid가 생산되었다.

  • PDF

Gluconacetobacter persimmonensis KJ145를 이용한 Bacterial Cellulose 및 초산발효에 미치는 Ethanol의 영향 (Effect of Ethanol on the Production of Cellulose and Acetic Acid by Gluconacetobacter persimmonensis KJ145)

  • 이오석;장세영;정용진
    • 한국식품영양과학회지
    • /
    • 제32권2호
    • /
    • pp.181-184
    • /
    • 2003
  • G. persimonensis-KJ145를 차용하여 BC 생산과 식초생산에 미치는 에탄올의 영향을 조사하였다. 그 결과 사과쥬스배지에 에탄올을 2%(v/v) 첨가하였을 때 BC의 생산성이 가장 좋았으며, 7%(v/v)를 첨가하였을 때 총산의 함량이 가장 높았다. BC와 식초를 동시 생산하기 위해서는 에탄올을 5%(v/v) 첨가하는 것이 가장 좋을 것으로 생각되며 발효과정 중의 식초 품질 변화에 대한 보다 자세한 연구가 요구되었다. BC와 식초 생산에 가장 효과적인 질소원은 CSL인 것으로 조사되었고 최적 농도는 15%(w/v)이었다. 배양시간의 영향을 조사한 결과 14일간 배양하는 것이 가장 많은 양의 BC를 생산하였으며, 최적조건에서 생산되는 BC 생산량은 7.55 g/L이었다.

Probiotic Properties and Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FBT215

  • Kim, Jaegon;Lee, Myung-Hyun;Kim, Min-Sun;Kim, Gyeong-Hwuii;Yoon, Sung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권6호
    • /
    • pp.783-791
    • /
    • 2022
  • Gamma-aminobutyric acid (GABA) improves various physiological illnesses, including diabetes, hypertension, depression, memory lapse, and insomnia in humans. Therefore, interest in the commercial production of GABA is steadily increasing. Lactic acid bacteria (LAB) have widely been reported as a GABA producer and are safe for human consumption. In this study, GABA-producing LAB were preliminarily identified and quantified via GABase assay. The acid and bile tolerance of the L. plantarum FBT215 strain were evaluated. The one-factor-at-a-time (OFAT) strategy was applied to determine the optimal conditions for GABA production using HPLC. Response surface methodology (RSM) with Box-Behnken design was used to predict the optimum GABA production. The strain FBT215 was shown to be acid and bile tolerant. The optimization of GABA production via the OFAT strategy resulted in an average GABA concentration of 1688.65 ± 14.29 ㎍/ml, while it was 1812.16 ± 23.16 ㎍/ml when RSM was applied. In conclusion, this study provides the optimum culture conditions for GABA production by the strain FBT215 and indicates that L. plantarum FBT215 is potentially promising for commercial functional probiotics with health claims.