• Title/Summary/Keyword: acid corrosion

Search Result 498, Processing Time 0.02 seconds

Analysis of Likelihood of Failure for the Thinning of High Temperature Sulfide and Naphthenic Acid Corrosion through Risk Based Inspection using API-581 (API-581에 의한 위험기반검사에서 고온 황화물 및 나프텐산 부식의 두께감소에 의한 사고발생 가능성 해석)

  • Lee Hern-Chang;Lee Joong-Hee;Kim Tae-Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.4
    • /
    • pp.101-110
    • /
    • 2005
  • The likelihood of failure for the thinning of high temperature sulfide and naphthenic acid corrosion, which affect to a risk of facilities, was analyzed through the risk based inspection using API-581 BRD. We found that the corrosion rate was increased with increasing temperature and total acid number(TAN). And maximum value of the technical module subfactor(TMSF) was not varied with operating condition, but the TMSF was sensitively changed at the range of low temperature, low flow rate, and high TAN. Also, the TMSF was increased as an used year and inspection effectiveness increased, but it was increased as thickness, inspection number, and over design decreased.

Effect of the Mixed Electrolyte on the Film Growth and Corrosion Characteristics of Anodized Al 6061 Alloy (Al 6061 합금 양극산화피막의 성장과 부식특성에 미치는 혼합 전해용액의 영향)

  • Ryu, Han-Woong;Kim, Yong-Hwan;Chung, Uoo-Chang;Chung, Won-Sub
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.244-249
    • /
    • 2007
  • The properties of anodized films on aluminum 6061 alloy in single electrolyte of sulfuric acid and mixed electrolyte of sulfuric-boric acid and sulfuric-boric-nitric acid have been studied. Polarization tests in NaC solution were used to investigate the corrosion performance. Characteristics of film formation and surface morphology were examined by optical microscopy, FE-SEM and EDS. The results obtained have indicated that oxide films growth have been promoted by nitric acid and anodized films in mixed electrolyte have superior corrosion resistance. In case of anodic films formed in mixed electrolyte, some grooves and numerous crazings were also observed at the surface.

Effect of Hydrofluoric Acid on the Electrochemical Properties of Additive Manufactured Ti and Its Alloy (적층가공된 티타늄 합금의 전기화학적 특성에 미치는 불산의 영향)

  • Kim, K.T.;Cho, H.W.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.166-175
    • /
    • 2018
  • In this study, the electrochemical properties of CP-Ti (commercially pure titanium) and Ti-64 (Ti-6Al-4V) were evaluated and the effect of hydrofluoric acid on corrosion resistance and electrochemical properties was elucidated. Additive manufactured materials were made by DMT (Directed Metal Tooling) method. Samples were heat-treated for 1 hour at $760^{\circ}C$ and then air cooled. Surface morphologies were studied by optical microscope and SEM. Electrochemical properties were evaluated by anodic polarization method and AC-impedance measurement. The oxide film formed on the surface was analyzed using an XPS. The addition of HF led to an increase in the passive current density and critical current density and decreased the polarization resistance regardless of the alloys employed. Based on the composition of the oxide film, the compositional difference observed by the addition of HF was little, regardless of the nature of alloys. The Warburg impedance obtained by AC-impedance measurement indicates the dissolution of the constituents of CP-Ti and Ti-64 through a porous oxide film.

Effects of Casting Method and Rolling on the Corrosion Behaviors of Pb Alloys for a Lead Acid Battery (주조 방식 및 압연에 따른 연축전지용 납 합금 기판의 부식 특성)

  • Oh, KkochNim;Lee, Kyu Hyuk;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • In this study, we examined corrosion behaviors of two types of Pb alloys for a lead acid battery comparatively. One containing 6.6 wt% Sn, 36 mg/kg Bi, and 612.4 mg/kg Ca was prepared by twin-roll continuous casting. The other containing 5.2 wt% Sn, 30.5 mg/kg Ag, and 557 mg/kg Ca was made by twin-belt continuous casting. Potentiodynamic polarization tests were performed to evaluate corrosion resistance. Cyclic voltammetry was done to examine oxidation and reduction reactions occurring on the surface of each alloy in 4.8 M H2SO4 solution. Electrochemical test results implied that the Pb alloy prepared with the twin-belt casting method was less stable than that cast with the twin-roll method. Such results might be due to precipitations formed during the casting process. Rolling did not appear to affect the corrosion behavior of the twin-roll samples with Ag < 10 mg/kg, while it reduced the anodic reaction of Ag on the surface of the twin-belt sample with 30.5 mg/kg Ag.

Evaluation of the Inhibitive Performance of Cyperus Conglomeratus Leaves Extract as a Green Corrosion Inhibitor on Mild Steel XC70 in Acid Medium

  • Belkis, Guessoum;Abdelkader, Hadj Seyd;Oumelkheir, Rahim
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.171-183
    • /
    • 2022
  • The performance and inhibitory action of the aqueous extract of Cyperus Conglomeratus's leaves against corrosion of XC70 steel in a 1M HCl acid medium are studied by the determination of the weight loss, the potentiodynamic polarization curves analysis, and electrochemical impedance measurements (electrochemical techniques). The corrosion inhibitory efficiency of XC70 steel increases with the increasing concentration of the green inhibitor, however, the corrosion rate of the steel decreases. Weight loss measurements show that the maximum percentage corrosion inhibition efficiency is approximately 61.86%, while the analysis of the mixed character polarization curves shows that the inhibitor could achieve an inhibition efficiency of 86.96%. The electrochemical impedance study confirmed that the value of the charge transfer resistance (Rct) increases and the value of the double layer capacity (Cdl) decreases with increasing concentration of the aqueous extract of Cyperus Conglomeratus's leaves, thus increasing the inhibition efficiency. The study showed that this aqueous extract acts by adsorption on the metal surface; this adsorption follows the Langmuir isotherm. This research work showed that Cyperus Conglomeratus leaves extract acts as an effective and eco-friendly inhibitor on mild steel in an acid medium.

Corrosion behavior of SA508 low alloy steels exposed to aerated boric acid solutions

  • Lim, Yun Soo;Hwang, Seong Sik;Kim, Dong Jin;Lee, Jong Yeon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1222-1230
    • /
    • 2020
  • The corrosion rates of the reactor pressure vessel materials of SA508 Grade 3 were measured using a weight loss method in aerated boric acid solutions to simulate the evaporation of leaked PWR primary water in an ambient environment. The corrosion behavior and products were examined using X-ray diffraction and electron microscopy. SA508 showed typical general corrosion characteristics. The corrosion rate increased steadily as the boron concentration was increased. As the immersion time elapsed, the corrosion rate slowly or rapidly decreased according to the oxidation reaction of iron. The corrosion rate showed a complicated pattern depending on the temperature; it increased gradually and then rapidly decreased again when reaching a certain transition temperature. The corrosion products of SA508 were found to be FeO(OH), Fe2O3, and Fe3O4. As the boron concentration decreased and the temperature was increased, the formation of Fe3O4 was more favorable as compared to the formation of FeO(OH) and Fe2O3. Consequently, the changes of the corrosion rate and behavior were closely related to the oxidation reaction of iron on the surface. The corrosive damage to SA508 appears to be most severe when the oxidation reaction is such that Fe2O3 forms as a corrosion product.

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

A Study on the Pb-Ca-Sn Grid Alloy of Positive Plate in Lead-Acid Battery (납축전지에서 양극판의 Pb-Ca-Sn 그리드 합금에 관한 연구)

  • Ku, Bon-Keun;Jeong, Soon-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.518-524
    • /
    • 2008
  • In this study, positive plates of lead acid battery of Pb-Ca alloy and Pb-Ca-Sn alloy were fabricated and the mechanical characteristics of positive plates were measured. This study observed how the changes of content of Ca & Sn affect interface corrosion which is located in between grid & active materials and lead acid batteries as well. The mechanical characteristics of grid alloy is better when Ca is 0.05 wt.% then 0.1 wt.%. This study said that the corrosion rate between the active material based on the charge/discharge cycle of lead acid battery and grid interface is much faster than a grid which contains Sn. And furthermore, according to the study the rate 30 of Sn/Ca which is added to grid shows the best performance.

Involvement of Organic Acid During Corrosion of Iron Coupon by Desulfovibrio desulfuricans

  • Park, Kyung-Ran;Lee, Hyun-Jin;Lee, Hong-Keum;Kim, Yeong-Kwan;Oh, Young-Sook;Choi, Sung-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.937-941
    • /
    • 2003
  • Microbiologically influenced corrosion (MIC) is an electrochemical process where the participation of microorganisms initiates, facilitates, or accelerates the corrosion reaction. Sulfate-reducing bacteria (SRB) reduce sulfate to sulfide and are known to be the most destructive microorganisms in anaerobic MIC. Accordingly, the current study attempted to elucidate the mechanisms involved and the relative importance of the corrosive products in SRB-induced corrosion. The measured rate of anaerobic corrosion of iron coupons by Desulfovibrio desulfuricans was $89.9{\;}\mu\textrm{g}{\;}\textrm{m}^{-2}{\;}d^{-1}$. Direct contact between the cells and the iron coupon did not seem to be necessary for corrosion to occur, since the corrosion rate was similar ($100.8{\;}\mu\textrm{g}{\;}\textrm{m}^{-2}{\;}d^{-1}$) when the coupon was enclosed in a dialysis bag. The participation of sulfide in the corrosion process was only marginal, as the specific corrosion rate was 2.5 times higher in a sulfate-free pyruvate medium than in an $H_2S-producing$ lactate medium. Acetate (18.8-22.1 mM), the end-product of pyruvate and lactate metabolism, was identified in the culture medium and thus presumed to play a major role in the corrosion process involving Desulfovibrio desulfuricans.

Comprehensive Analysis of the Corrosion Inhibition Performance of 4-Piperonylideneaminoantipyrine for Mild Steel in HCl Solution: Concentration, Time, Temperature Effects, and Mechanistic Insights

  • Ahmed Y. I. Rubaye;Sabah M. Beden;Ahmed A. Alamiery;A. A. H. Kadhum;Waleed K. Al-Azzawi
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.20-32
    • /
    • 2024
  • Metal corrosion in acidic environments is a major issue in various industrial applications. This study evaluates the 4-piperonylideneaminoantipyrine (PPDAA) corrosion inhibition efficiency for mild steel in a hydrochloric acid (HCl) solution. The weight loss method was used to determine the corrosion inhibition efficiency at different concentrations and immersion time periods. Results revealed that the highest inhibition efficiency (94.3%) was achieved at 5 mM concentration after 5 hours of immersion time. To inspect the surface morphology of the inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl. Density functional theory (DFT) calculations were performed to investigate the molecular structure and electronic properties of the inhibitor molecule to understand the corrosion inhibition mechanism. Theoretical results showed that the inhibitor molecule can adsorb onto the mild steel surface through its nitrogen and oxygen atoms, forming a protective layer that prevents HCl corrosive attack. These findings highlight the potential of PPDAA as an effective corrosion inhibitor for mild steel in HCl solution. Moreover, combining experimental and theoretical approaches provides insights into the mechanism of corrosion inhibition, which is essential for developing effective strategies to prevent metal corrosion in acidic environments.