• 제목/요약/키워드: acid corrosion

검색결과 501건 처리시간 0.025초

Application of Cathodic Protection on Metallic Structure in Extremely Acidic Fluids

  • Chang, H.Y.;Yoo, Y.R.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.140-146
    • /
    • 2005
  • Fossil fired power plant produces the electric energy by using a thermal energy by the combustion of fossil fuels as like oil, gas and coal. The exhausted flue gas by the combustion of oil etc. contains usually many contaminated species, and especially sulfur-content has been controlled strictly and then FGD (Flue Gas Desulfurization) facility should be installed in every fossil fired power plant. To minimize the content of contaminations in final exhaust gas, high corrosive environment including sulfuric acid (it was formed during the process which $SO_2$ gas combined with $Mg(OH)_2$ solution) can be formed in cooling zone of FGD facility and severe corrosion damage is reported in this zone. These conditions are formed when duct materials are immersed in fluid that flows on the duct floors or when exhausted gas is condensed into thin layered medium and contacts with materials of the duct walls and roofs. These environments make troublesome corrosion and air pollution problems that are occurred from the leakage of those ducts. The frequent shut down and repairing works of the FGD systems also demand costs and low efficiencies of those facilities. In general, high corrosion resistant materials have been used to solve this problem. However, corrosion problems have severely occurred in a cooling zone even though high corrosion resistant materials were used. In this work, a new technology has been proposed to solve the corrosion problem in the cooling zone of FGD facility. This electrochemical protection system contains cathodic protection method and protection by coating film, and remote monitoring-control system.

Evaluation of Metals (Al, Fe, Zn) in Alternative Fuels by Electrochemical Impedance Spectroscopy in Two Electrode Cell

  • Song, Yon-Kyun;Lim, Geun-Woong;Kim, Hee-San
    • Corrosion Science and Technology
    • /
    • 제9권2호
    • /
    • pp.92-97
    • /
    • 2010
  • Many kinds of alternative fuels such as biodiesel, ethanol, methanol, and natural gas have been developed in order to overcome the limited deposits in fossil fuels. In some cases, the alternative fuels have been reported to cause degrade materials. The corrosion rates of metals were measured by immersion test, a kind of time consuming test because low conductivity of these fuels was not allowed to employ electrochemical tests. With twin two-electrode cell newly designed for the study, however, electrochemical impedance spectroscopy (EIS) test was successfully applied to evaluation of the corrosion resistance ($R_p$) of zinc, iron, aluminum, and its alloys in an oxidized biodiesel and gasoline/ethanol solutions and the corrosion resistance from EIS was compared with the corrosion rate from immersion test. In biodiesel, $R_p$ increased in the order of zinc, iron, and aluminum, which agreed with the corrosion resistance measured from immersion test. In addition, on aluminum showing the best corrosion resistance ($R_p$), the effect of magnesium as an alloying element was evaluated in gasoline/ethanol solutions as well as the oxidized biodiesel. $R_p$ increased with addition of magnesium in gasoline/ethanol solutions containing chloride and the oxidized biodiesel. In the mean while, in gasoline/ethanol solutions containing formic acid, Al-Mg alloy added 1% magnesium had the highest $R_p$ and the further addition of magnesium decreased $R_p$. It can be explained with the fact that the addition of more than 1% magnesium increases the passive current density of Al-Mg alloys.

바이오가스 배관의 부식 파손 원인 분석 (Corrosion Failure Analysis of a Biogas Pipe)

  • 송민지;김우철;김희산;김정구;이수열
    • 열처리공학회지
    • /
    • 제36권3호
    • /
    • pp.153-160
    • /
    • 2023
  • The use of biogas is an industrially necessary means to achieve resource circulation. However, since biogas obtained from waste frequently causes corrosion in pipes, it is important to elucidate corrosion mechanisms of the pipes used for biogas transportation. Recently, corrosion failure occurred in a pipe which supplied for the biogas at the speed of 12.5 m/s. Pinholes and pits were found in a straight line along the seamline of the pipe. By using corrosion-damaged samples, residual thickness, microstructure, and composition of oxide film and inclusion were examined to analyze the cause of the failure. It was revealed that the thickness reduction of biogas pipe was ~0.11 mm per year. A thin sulfuric acid film was formed on the surface of the interior of a pipe due to moisture and hydrogen sulfide contained in a biogas. Near the seamline, microstructure was heterogeneous and manganese sulfide (MnS) was found. Pits were generated by micro-galvanic corrosion between the manganese sulfide and the matrix in the interior of the pipe along the seamline. In addition, microcracks formed along the grain boundaries beneath the pits revealed that hydrogen-induced cracking (HIC) also contributed to accelerating the pitting corrosion.

몰타르 시험편(W/C:0.4) 내부철근의 분극특성에 미치는 재령년수의 영향 (The Effect of Passing Aged Years to the Polarization Characteristics of Embedded Steel Bar of Mortar Specimen(W/C:0.4))

  • 문경만;원종필;박동현;이성열;정진아;이명훈;백태실
    • Corrosion Science and Technology
    • /
    • 제13권1호
    • /
    • pp.20-27
    • /
    • 2014
  • The structures of reinforced concrete has been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as sea water, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of inner steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, multiple mortar test specimen(W/C:0.4) with six types having different cover thickness each other was prepared and was immerged in seawater solution for five years to evaluate the effect of cover thickness and immersion years to corrosion property of embedded steel bar. And the polarization characteristics of these embedded steel bars was investigated using electrochemical methods such as measuring corrosion potential, cathodic polarization curve, and cyclic voltammogram. At the beginning of immersion, the corrosion potentials exhibited increasingly nobler values with increasing cover thickness. However, after immersed for 5 years, the thicker cover of thickness, the corrosion potentials shifted in the negative direction, and the relationship between corrosion potential and cover thickness was not in good agreement with each other. Therefore, it is considered that the thinner cover of thickness, corrosive products deposited on the surface of the embedded steel bar plays the role as a resistance polarization which is resulted in decreasing the corrosion rate as well as shifting the corrosion potential in the positive direction. As a result, it seemed that the evaluation which corrosion possibility of the reinforced steel would be estimated by only measuring the corrosion potential may not be a completely desirable method. Therefore, it is suggested that we should take into account various parameters, including cover thickness, passed aged years as well as corrosion potential for more accurate assessment of corrosion possibility of reinforced steel which is exposed to partially or fully in marine environment for long years.

Evaluation of Tolerance of Some Elemental Impurities on Performance of Pb-Ca-Sn Positive Pole Grids of Lead-Acid Batteries

  • Abd El-Rahman, H.A.;Gad-Allah, A.G.;Salih, S.A.;Abd El-Wahab, A.M.
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권3호
    • /
    • pp.123-134
    • /
    • 2012
  • The electrochemical performance of positive pole grids of lead-acid batteries made of Pb-0.08%Ca-1.1%Sn alloys without and with 0.1 wt% of each of Cu, As or Sb and with 0.1 wt% of Cu, As and Sb combined was investigated by electrochemical methods in 4.0 M $H_2SO_4$. The corrodibility of alloys under open-circuit conditions and constant current charging of the positive pole, the positive pole gassing and the self-discharge of the charged positive pole were studied. All impurities (Cu, As, Sb) were found to decrease the corrosion resistance, $R_{corr}$ after 1/2 hour corrosion, but after 24 hours an improvement in $R_{corr}$ was recorded for Sb containing alloy and the alloy with the three impurities combined. While an individual impurity was found to enhance oxygen evolution reaction, the impurities combined significantly inhibition this reaction and the related water loss problem was improved. Impedance results were found helpful in identification of the species involved in the charging/discharging and the self-discharge of the positive pole. Impurities individually or combined were found to increase the self-discharge during polarization (33-68%), where Sb containing alloy was the worst and impurities combined alloy was the least. The corrosion of the positive pole grid in the constant current charging was found to increase in the presence of impurities by 5-10%. Under open-circuit, the self-discharge of the charged positive grids was found to increase significantly (92-212%) in the presence of impurities, with Sb-containing alloy was the worst. The important result of the study is that the harmful effect of the studied impurities combined was not additive but sometimes lesser than any individual impurity.

화학적 환경에 노출된 콘크리트 보강용 FRP 보강근의 장기 효과 (Long-Term Effect of Chemical Environments on FRP Reinforcing Bar for Concrete Reinforcement)

  • 박찬기;원종필;유정길
    • 콘크리트학회논문집
    • /
    • 제15권6호
    • /
    • pp.811-819
    • /
    • 2003
  • 철근의 부식은 철근콘크리트 구조물의 주요파괴 원인이다. 철근의 부식에 대한 문제점을 해결할 가능성이 있는 재료 중 FRP 보강근은 그 가능성이 높다. 그렇지만 FRP 보강근은 보강철근과 다른 파괴 매카니즘으로 의하여 현저하게 성능이 저하될 가능성을 가지고 있다. 이와 같은 환경에는 알칼리, 산, 염해 및 물과 수분 등이 있다. 따라서 본 연구에서는 FRP 보강근의 화학적 환경하에서의 내구성능을 평가하고자 하였으며 사용된 FRP 보강근은 2가지 종류의 CFRP 보강근 및 GFRP 보강근, 한가지 종류의 AFRP 보강근으로 알칼리용액, 산용액, 염해환경 및 중성용액에 노출시켰다. FRP 보강근의 역학적 특성 및 내구특성은 인장, 압축 및 전단시험을 통하여 평가하였으며 시험결과 FRP 보강근은 매우 혹독한 화학적 환경에서 우수한 내구성을 가지고 있음을 알 수 있었다.