• 제목/요약/키워드: acid corrosion

검색결과 498건 처리시간 0.023초

Corrosion Inhibition of Carbon Steel in Sulfuric Acid Using Cymbopogon citratus as a Green Corrosion Inhibitor

  • Gadang, Priyotomo;Tamara Emylia Suci, Nurarista;Yanyan, Dwiyanti;Bening Nurul Hidayah, Kambuna;Arini, Nikitasari;Siska, Prifiharni;Sundjono, Sundjono
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.423-433
    • /
    • 2022
  • The objective of this study was to determine whether Cymbopogon citratus extract as a corrosion inhibitor from natural tropical resources could prevent corrosion of carbon steel in sulfuric acid solution. Inhibitory action of this extract was investigated using electrochemical methods such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Those methods revealed corrosion rate, efficiency of inhibition, and adsorptions isotherm values when the extract was added to the sulfuric acid solution at concentration up to 500 ppm with various immersion time at ambient temperature. Results revealed that higher concentration of the extract and longer immersion time decreased the corrosion rate of carbon steel whereas the inhibition efficiency of the extract was increased up to 97.25%. The value of charge transfer resistance was increased significantly by adding the extract at concentration up to 500 ppm with an immersion time of 60 minutes. The type of the extract was a mixed inhibitor. It could inhibit the corrosion process in both anodic and cathodic sides electrochemically. Results of this study suggest that the mechanism of adsorption on the surface of carbon steel is related to Langmuir adsorption isotherm.

은의 부식 및 변식에 미치는 전해질 용액에 따른 ICCP 전압의 영향 (Effect of ICCP Potential with Electrolyte on Corrosion and Discolor of Silver)

  • 신병현;김도형;정원섭
    • 한국표면공학회지
    • /
    • 제53권5호
    • /
    • pp.207-212
    • /
    • 2020
  • Silver is an inexpensive precious metal and is used in various jewelry in Asia. Although silver has high potential, it has corrosion resistance that is vulnerable to boiling sulfuric acid and nitric acid. So, silver research is needed to prevent the corrosion with environment. But silver corrosion is not studied. sulfuric acid make the uniform corrosion and chloride ion make the pitting corrosion. ICCP inhibits the corrosion because it offset electrons. This study used a potential from - 4 V to 4 V to check the effect of potential. Corrosion rate is lowet at -1 V.

Effect of Ground Granulated Blast Furnace Slag, Pulverized Fuel Ash, Silica Fume on Sulfuric Acid Corrosion Resistance of Cement Matrix

  • Jeon, Joong-Kyu;Moon, Han-Young;Ann, Ki-Yong;Kim, Hong-Sam;Kim, Yang-Bea
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권2E호
    • /
    • pp.97-102
    • /
    • 2006
  • In this study, the effect of supplementary materials(GGBS, PFA, SF) on sulfuric acid corrosion resistance was assessed by measuring the compressive strength, corroded depth and weight change at 7, 28, 56, 91, 180 and 250 days of immersion in sulfuric acid solution with the pH of 0.5, 1.0, 2.0 and 3.0. Then, it was found that an increase in the duration of immersion and a decrease in the pH, as expected, resulted in a more severe corrosion irrespective of binders: increased corroded depth and weight change, and lowered the compressive strength. 60% GGBS mortar specimen was the most resistant to acid corrosion in terms of the corroded depth, weight change and compressive strength, due to the latent hydraulic characteristics and lower portion of calcium hydroxide. The order of resistance to acid was 60% GGBS>20% PFA>10% SF>OPC. In a microscopic examination, it was found that acid corrosion of cement matrix produced gypsum, as a result of decomposition of hydration products, which may loose the structure of cement matrix, thereby leading to a remarkable decrease of concrete properties.

고온 및 고압조건에서 아세트산과 아세토나이트릴의 성분비에 따른 부식저항성 금속의 부식특성 (Corrosion Characteristics of Corrosion-Resistant Metal with Different Composition Ratios of Acetic Acid and Acetonitrile at High Temperature and Pressure)

  • 황현규;신동호;이승준;김성종
    • Corrosion Science and Technology
    • /
    • 제23권2호
    • /
    • pp.154-165
    • /
    • 2024
  • Acetic acid and acetonitrile produced in the chemical process of petrochemical plants are used at high temperatures and pressures. They are exposed to harsh corrosive environments. The present investigation aimed to evaluate corrosion characteristics of metals with excellent corrosion resistance by performing immersion and electrochemical experiments with different composition ratios of acetic acid and acetonitrile in a high-temperature and high-pressure environment. Results of immersion experiment revealed that as acetic acid concentration increased, surface damage and corrosion also increased. In immersion experiments under all conditions, super austenitic stainless steel (UNS N08367) had the best corrosion resistance among various metals. The maximum damage depth under the most severe immersion conditions was observed to be 4.19 ㎛, which was approximately 25.25 ㎛ smaller than that of highly damaged stainless steel (UNS S31804). As a result of electrochemical experiments, electrochemical characteristics of various metals presented some differences with different composition ratios of acetic acid and acetonitrile. However, super austenitic stainless steel (UNS N08367) had the best corrosion resistance at a high pressure condition with a high concentration of acetic acid.

Corrosion in Batteries

  • Muniyandi, N.
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2003
  • A comprehensive coverage of corrosion in batteries is rendered difficult by the wide choice of materials, environments and physical features as obtained in practical settings. Understanding of the complex processes that occur in these electrochemical systems gets clearer as new theoretical approaches backed by sophisticated analytical and characterization techniques continue to provide valuable insights which aid in controlling/mitigating wasteful corrosion reactions which affect battery shelf-life, cycle life, rate capability and capacity. In the light of the above, I limit myself to a discussion on corrosion aspects in representative system such as conventional Leclanche, lead-acid battery and magnesium batteries, and advanced lithium systems.

산-염소이온 분위기의 인자전위에 따른 내후성강 용접부의 부식파괴에 관한 연구 (A Study on Corrosion Failure of a Weathering Steel Weldment with Various Applied Potentials in Acid-chloride Solution)

  • 최윤석;김정구;김종집;이병훈
    • Journal of Welding and Joining
    • /
    • 제18권3호
    • /
    • pp.97-105
    • /
    • 2000
  • The stress corrosion cracking(SCC) and hydrogen embrittlement cracking(HEC) characteristics of a weathering steel weldment were investigated in aerated acid-chloride solution. The electrochemical properties of weldment were investigated by polarization test and galvanic corrosion test. Weathering steel did not show passive behavior in the acid-chloride solution. Galvanic corrosion between the weld metal and the base metal was not observed because the base metal was anodic to the weld metal. The slow-strain-rate tests(SSRT0 were conducted at a constant strain rate o 7.87×{TEX}$10^{-7}${/TEX}/s at corrosion potential, and at potentiostatically controlled anodic and cathodic potentials. The weldment of weathering steel was susceptible to both anodic dissolution SCC and hydrogen evolution HEC.

  • PDF

산성비 분위기에서 교량용 강재 SWS400의 용접부 부식에 관한 연구 (A study of corrosion of welded bridge steel SWS400 in the acid-rain environment)

  • 정원석;김정구;이병훈
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.124-133
    • /
    • 1997
  • Corrosion behavior of welded SWS400 steel used for bridges was studied in a range of the acid-rain environment using immersion, potentiodynamic polartization, polarization resistance, and galvanic corrosion tests. The SWS400 steel exhibited active corrosion behavior in the range of acid-rain environment, i.e. no passivation. As the results of immersion corrosion test, Tafel extrapolation method, and polarization resistance measurement, the average corrosion rats of the steels were 0.31-0.72 mm/year in the pH of 4-5, and 0.17 mm/yera in the pH 6, respectively. The steel showed a resistance to corrosion in the pH 6. The observed active behavior of SWS400 steel in chloride-containing environment indicated that the chloride ions exerts a detrimental influence on the formation of passive films. Galvanic corrosion was observed between the weld and the base metals because the weld is anodic to the base metal.

  • PDF

Effect of Post-CMP Cleaning On Electrochemical Characteristics of Cu and Ti in Patterned Wafer

  • Noh, Kyung-Min;Kim, Eun-Kyung;Lee, Yong-Keun;Sung, Yun-Mo
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.174-178
    • /
    • 2009
  • The effects of post-CMP cleaning on the chemical and galvanic corrosion of copper (Cu) and titanium (Ti) were studied in patterned silicon (Si) wafers. First, variation of the corrosion rate was investigated as a function of the concentration of citric acid that was included in both the CMP slurry and the post-CMP solution. The open circuit potential (OCP) of Cu decreased as the citric acid concentration increased. In contrast with Cu, the OCP of titanium (Ti) increased as this concentration increased. The gap in the OCP between Cu and Ti increased as citric acid concentration increased, which increased the galvanic corrosion rate between Cu and Ti. The corrosion rates of Cu showed a linear relationship with the concentrations of citric acid. Second, the effect of Triton X-$100^{(R)}$, a nonionic surfactant, in a post-CMP solution on the electrochemical characteristics of the specimens was also investigated. The OCP of Cu decreased as the surfactant concentration increased. In contrast with Cu, the OCP of Ti increased greatly as this concentration increased. Given that Triton X-$100^{(R)}$ changes its micelle structure according to its concentration in the solution, the corrosion rate of each concentration was tested.

$Co_2$ Corrosion Mechanism of Carbon Steel in the Presence of Acetate and Acetic Acid

  • Liu, D.;Fu, C.Y.;Chen, Z.Y.;Guo, X.P.
    • Corrosion Science and Technology
    • /
    • 제6권5호
    • /
    • pp.227-232
    • /
    • 2007
  • The corrosion behavior of carbon steel (N80) in carbon dioxide saturated 1%NaCl solution with and without acetic acid or acetate was investigated by weight-loss test, electrochemical methods (polarization curve, Electrochemical impedance spectroscopy). The major objective is to make clear that the effect of acetic acid and acetate on the corrosion of carbon steel in $Co_2$ environments. The results indicate that either acetic acid or acetate accelerates cathodic reducing reaction, facilitates dissolution of corrosion products on carbon steel, and so promotes the corrosion rate of carbon steel in carbon dioxide saturated NaCl solution. All Nyquist Plots are consisting of a capacitive loop in high frequency region, an inductive loop in medial frequency region and a capacitive arc in low frequency region. The high frequency capacitive loop, medial frequency inductive loop and low frequency capacitive arc are corresponding to the electron transfer reaction, the formation/adsorption of intermediates and dissolution of corrosion products respectively. All arc of the measured impedance reduced with the increase of the concentration of Ac-, especially HAc. However, the same phenomenon is not notable after reducing pH value by adding HCl. HAc is a stronger proton donor and can be reduced directly by electrochemical reaction firstly. Ac- can't participate in electrochemistry reaction directly, but $Ac^-$ an hydrate easily to create HAc in carbon dioxide saturated environments. HAc is as catalyst in $Co_2$ corrosion. As a result, the corrosion rate was accelerated in the presence of acetate ion even pH value of solution increased.

반도체 패키징용 금-코팅된 은 와이어의 부식특성 (Corrosion Characteristics of Gold-Coated Silver Wire for Semiconductor Packaging)

  • 홍원식;김미송;김상엽;전성민;문정탁;김영식
    • Corrosion Science and Technology
    • /
    • 제20권5호
    • /
    • pp.289-294
    • /
    • 2021
  • In this study, after measuring polarization characteristics of 97.3 wt% Ag, Au-Coated 97.3 wt% Ag (ACA) and 100 wt% Au wires in 1 wt% H2SO4 and 1 wt% HCl electrolytes at 25 ℃, corrosion rate and corrosion characteristics were comparatively analyzed. Comparing corrosion potential (ECORR) values in sulfuric acid solution, ACA wire had more than six times higher ECORR value than Au wire. Thus, it seems possible to use a broad applied voltage range of bonding wire for semiconductor packaging which ACA wire could be substituted for the Au wire. However, since the ECORR value of ACA wire was three times lower than that of the Au wire in a hydrochloric acid solution, it was judged that the use range of the applied voltage and current of the bonding wire should be considered. In hydrochloric acid solution, 97.3 wt% Ag wire showed the highest corrosion rate, while ACA and Au showed similar corrosion rates. Additionally, in the case of sulfuric acid solution, all three types showed lower corrosion rates than those under the hydrochloric acid solution environment. The corrosion rate was higher in the order of 97.3 wt% Ag > ACA > 100 wt% Au wires.