• Title/Summary/Keyword: acetylesterase

Search Result 3, Processing Time 0.015 seconds

Helper-Independent Live Recombinant Adenovirus Vector Expressing the Hemagglutinin-Esterase Membrane Glycoprotein

  • YOO, DONGWAN;ICK-DONG YOO;YOUNG-HO YOON;FRANK L GRAHAM;LORNE A. BABIUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.174-182
    • /
    • 1992
  • The hemagglutinin-esterase glycoprotein (HE) gene of bovine coronavirus, coupled with a simian virus 40 early promoter and polyadenylation signal, was inserted into a human adenovirus transfer vector. The transfer vector was used to co-transfect 293 cells along with adenovirus genomic DNA. The hemagglutinin-esterase transcription unit was rescued into the adenovirus genome by homologous in vivo DNA recombination between the vector plasmid DNA and the adenovirus genomic DNA, and a recombinant adenovirus was isolated by several rounds of plaque assays. Thus the recombinant adenovirus carries the hemagglutinin-esterase gene in the early transcription region 3 (E3) of the adenovirus genome in the parallel orientation to the E3 transcription. The recombinant adenovirus synthesized the HE polypeptide in HeLa cells as demonstrated by immunoprecipitation with anti-coronavirus rabbit antisera. The recombinant HE polypeptide could be labelled by $[^3H]$glucosamine, demonstrating that the recombinant HE was glycosylated. Cells expressing the HE polypeptide exhibited hemadsorption activity when incubated with mouse erythrocytes. The HE was transported to the plasma membrane as shown by the cell surface immunofluorescence, indicating that the recombinant HE polypeptide retained its biological activities. Potential for the use of infectious recombinant adenovirus as a live virus-vectored vaccine candidate for bovine coronavirus disease is discussed.

  • PDF

Rumen Microbes, Enzymes and Feed Digestion-A Review

  • Wang, Y.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1659-1676
    • /
    • 2002
  • Ruminant animals develop a diverse and sophisticated microbial ecosystem for digesting fibrous feedstuffs. Plant cell walls are complex and their structures are not fully understood, but it is generally believed that the chemical properties of some plant cell wall compounds and the cross-linked three-dimensional matrix of polysaccharides, lignin and phenolic compounds limit digestion of cell wall polysaccharides by ruminal microbes. Three adaptive strategies have been identified in the ruminal ecosystem for degrading plant cell walls: production of the full slate of enzymes required to cleave the numerous bonds within cell walls; attachment and colonization of feed particles; and synergetic interactions among ruminal species. Nonetheless, digestion of fibrous feeds remains incomplete, and numerous research attempts have been made to increase this extent of digestion. Exogenous fibrolytic enzymes (EFE) have been used successfully in monogastric animal production for some time. The possibility of adapting EFE as feed additives for ruminants is under intensive study. To date, animal responses to EFE supplements have varied greatly due to differences in enzyme source, application method, and types of diets and livestock. Currently available information suggests delivery of EFE by applying them to feed offers the best chance to increase ruminal digestion. The general tendency of EFE to increase rate, but not extent, of fibre digestion indicates that the products currently on the market for ruminants may not be introducing novel enzyme activities into the rumen. Recent research suggests that cleavage of esterified linkages (e.g., acetylesterase, ferulic acid esterase) within the plant cell wall matrix may be the key to increasing the extent of cell wall digestion in the rumen. Thus, a crucial ingredient in an effective enzyme additive for ruminants may be an as yet undetermined esterase that may not be included, quantified or listed in the majority of available enzyme preparations. Identifying these pivotal enzyme(s) and using biotechnology to enhance their production is necessary for long term improvements in feed digestion using EFE. Pretreating fibrous feeds with alkali in addition to EFE also shows promise for improving the efficacy of enzyme supplements.

Distribution and Activities of Hydrolytic Enzymes in the Rumen Compartments of Hereford Bulls Fed Alfalfa Based Diet

  • Lee, S.S.;Kim, C.-H.;Ha, J.K.;Moon, Y.H.;Choi, N.J.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1725-1731
    • /
    • 2002
  • The distribution and activities of hydrolytic enzymes (cellulolyti, hemicellulolytic,pectinolytic and others) in the rumen compartments of Hereford bulls fed 100% alfalfa hay based diets were evaluated. The alfalfa proportion in the diet was gradually increased for two weeks. Whole rumen contents were processed into four fractions: Rumen contents including both the liquid and solid fractions were homogenized and centrifuged, and the supernatant was assayed for enzymes located in whole rumen contents (WRE); rumen contents were centrifuged and the supernatant was assayed for enzymes located in rumen fluids (RFE); feed particles in rumen contents were separated manually, washed with buffer, resuspended in an equal volume of buffer, homogenized and centrifuged and supernatant was assayed for enzymes associated with feed particles (FAE); and rumen microbial cell fraction was separated by centrifugation, suspended in an equal volume of buffer, sonicated and centrifuged, and the supernatant was assayed for enzymes bound with microbial cells (CBE). It was found that polysaccharide-degrading proteins such as $\beta$-1,4-D-endoglucanase, $\beta$-1,4-D-exoglucanase, xylanase and pectinase enzymes were located mainly with the cell bound (CBE) fraction. However, $\beta$-D-glucosidase, $\beta$-D-fucosidase, acetylesterase, and $\alpha$-L-arabinofuranosidase were located in the rumen fluids (RFE) fraction. Protease activity distributions were 37.7, 22.1 and 40.2%, and amylase activity distributions were 51.6, 18.2 and 30.2% for the RFE, FAE and CBE fractions, respectively. These results indicated that protease is located mainly in rumen fluid and with microbial cells, whereas amylase was located mainly in the rumen fluid.