• Title/Summary/Keyword: acetylcarnitine

Search Result 7, Processing Time 0.018 seconds

Species Difference in the Inhibition of Alcoholdehydrogenase by cArnitine and Acetylcarnitine

  • Cha, Youn-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.1
    • /
    • pp.75-78
    • /
    • 1999
  • Acetylcarnitine, a metabilite of carnitine, has been porven to be a potent inhibitor of ethanol oxidation in hepatocytes. It inhibits the activity of alcohol dehydrognase (ADH), but not the microsomal ethanol oxidizing system. which was significatly inhibited by acetylcarnitine at NAD ; acetylcarnitine $\leq$1. the main objectives of his study were to ascertain the interaction between acetylcarnitine and NAD on ADH activity and to elucidate whether different species have different effects. Tehpost-mocrosomal supernatant (PMS) was prepared from normal rat, guinea pig, mouse and broilers by differential centrifugation . Horse and yeast ADH were purchased from the Sigma Chemical Co. Prepared and purchased ADH are used for determination of ADH activity in the presence or absence of carnitine and acetylcar- nitine. Binding studies showed that acetylcarnitine did bind to ADH in a dose realted manner when low NAD ; acetylcar- nitine ratio was provided. It was found that the inhibitionof ADH activity occurred only when NAD concentration was less than the inhibitor concentration . Crystalline and crude ADH preparation from different vertebrate species wer inhibited by acetylcarnitine, whereas the yeast ADH was not affected by acetylcarnitine.

  • PDF

The Effect of L-carnitine and Acetylcarnitine on Sperm Parameters in vitro (생체외 L-carnitine과 Acetylcarnitine의 정자지표 개선 효과)

  • Lee, Wan;Park, Nam-Cheol
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.149-157
    • /
    • 2002
  • Objectives: To assess the scavenging effect of carnitine derivatives on oxidative damage to sperm during sperm processing, cryopreservation and thawing. Materials and Methods: Fresh semen samples from 20 normal healthy volunteers were collected by masturbation after at least 48 hours abstinence. After liquefaction of semen samples at room temperature, the specimens were diluted with sperm wash media (Ham's F-10, Life technologics) to a uniform density of $20{\times}10^6/ml$. L-carnitine or acetylcarnitine were added with various concentration of $0{\mu}M$, $10{\mu}M$, $30{\mu}M$ in semen sample or cryoprotectant. All specimens were cryopreservated at $-196^{circ}C$ $LN_2$ for 3 days. Sperm motility, vitality, fertilizing capacity, reactive oxygen species formation and the level of lipid peroxidation were analyzed by computer assisted semen analyzer, eosin-nigrosin stain, hypoosmotic swelling test, chemiluminescence and thiobarbituric acid method, respectively, during sperm processing, cryopreservation and thawing. Results: The sperm motility was only increased in proportion to the concentration of acetylcarnitine with no statistical significance (p>0.05). The sperm vitality was also significantly improved in proportion to the concentration of acetylcarnitine with statistical significance (p<0.05). The sperm fertilizing capacity was significantly increased in proportion to the concentration of L-carnitine and acetylcarnitine and reactive oxygen species generation and lipid peroxidation were significantly decreased with same fashion (p<0.05). On comparison of effects between L-carnitine and acetylcarnitine, acetylcarnitine was superior to L-carnitine on the improvement of sperm motility and vitality as well as the suppression of reactive oxygen species generation and lipid peroxidation. Conclusions: These results suggest that carnitine derivatives have a scavenging effect against oxidative damages during sperm processing, cryopreservation and thawing. Therefore, carnitine derivatives may be useful as an oral antioxidant in patients with male infertility due to increased ROS generation.

Nonspecific Empirical Medical Therapy with Acetylcarnitine Effective in Oligoasthenospermic Men? (불임남성에서 Acetylcarnitine이 정액지표에 미치는 영향)

  • Kim, Jong-Woo;Lee, Jae-Seok;Park, Jeong-Su;Kim, Won-Tae;Seo, Ju-Tae
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.3
    • /
    • pp.177-182
    • /
    • 2004
  • Purpose: To determine the efficacy of $Carnitil^{(R)}$ (acetylcarnitine, Hanmi, Korea) therapy in idiopathic oligoasthenospermic men. Materials and Methods: Forty-four subfertile men with abnormal semen parameters were treated between March, 2003 and March, 2004 with 3 g of $Carnitil^{(R)}$ daily for 3 months. Changes in semen parameters were evaluated 3 months after this therapy. Results: The mean age was 34.2 years and the mean follow-up duration was 3.7 months. In asthenospemic patients (n=28), semen analysis before and after $Carnitil^{(R)}$ treatment showed an increase in volume ($2.64{\pm}1.65\;ml$ vs. $3.10{\pm}1.60\;ml$), motility ($35.1{\pm}17.7%$ vs. $45.9{\pm}20.4%$) and viability ($51.4{\pm}20.3%$ vs. $59.3{\pm}13.6%$) respectively. In oligoasthenospermic patients (n=16), semen analysis before and after $Carnitil^{(R)}$ treatment showed an increase in sperm count ($10.7{\pm}54.4\;million/ml$ vs. $38.4{\pm}32.5\;million/ml$) respectively. Conclusions: These results suggested that in idiopathic oligoasthenospermic men the empirical medical therapy with acetylcarnitine may be considered as primary treatment.

Determination of Acetyl-L-carnitine in human plasma by LC-ESI/MS/MS

  • Jang, Moon-Sun;Park, Chang-Hun;Kim, Ho-Hyun;Chang, Kyu-Young;Lee, Ye-Rie;Lee, Hee-Joo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.217.3-217.3
    • /
    • 2003
  • Acetyl-L-carnitine, a physiological component of the L-carnitine family, has been proposed for treating Alzheimer's disease in pharmacological doses. Acetyl-L-carnitine and d3-acetylcarnitine (internal standard) were analyzed by electrospray ionization / tandem mass spectrometry (ESI/MS/MS) after derivatization to their butylesters through treatment with butanolic hydrogen chloride. Acetyl-L-carnitine produced a protonated precursor ion at m/z 260 and a corresponding product ion of m/z 85. Analytes were separated on a Capcell Pak C18 (2.0${\times}$150mm, 5 mm). (omitted)

  • PDF

Identification of a novel frameshift mutation (L345Sfs*15) in a Korean neonate with methylmalonic acidemia

  • Kim, Young A;Kim, Ji-Yong;Kim, Yoo-Mi;Cheon, Chong Kun
    • Journal of Genetic Medicine
    • /
    • v.14 no.2
    • /
    • pp.80-85
    • /
    • 2017
  • Methylmalonic acidemia (MMA) is an autosomal recessive metabolic disorder characterized by an abnormal accumulation of methylmalonyl-CoA and methylmalonate in body fluids without hyperhomocysteinemia. Cardiac disease is a rarely known lethal complication of MMA, herein, we report a Korean neonate diagnosed with MMA on the basis of biochemical and genetic findings, who developed cardiomyopathy, resulting in sudden death. The patient presented vomiting and lethargy at 3 days of age. Initially, the patient had an increased plasma propionylcarnitine/acetylcarnitine concentration ratio of 0.49 in a tandem mass spectrometry analysis and an elevated ammonia level of $537{\mu}mol/L$. Urine organic acid analysis showed increased excretion of methylmalonate. Subsequent sequence analysis of the methylmalonyl-CoA mutase (MUT) gene revealed compound heterozygous mutations c.323G>A (p.Arg108His) in exon 1 and c.1033_1034del (p. Leu345Serfs*15) in exon 4, the latter being a novel mutation. In summary, this is the first case of MMA and cardiomyopathy in Korea that was confirmed by genetic analysis to involve a novel MUT mutation.

Comparison of metabolites in rumen fluid, urine, and feces of dairy cow from subacute ruminal acidosis model measured by proton nuclear magnetic resonance spectroscopy

  • Hyun Sang, Kim;Shin Ja, Lee;Jun Sik, Eom;Youyoung, Choi;Seong Uk, Jo;Jaemin, Kim;Sang Suk, Lee;Eun Tae, Kim;Sung Sill, Lee
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Objective: In this study, metabolites that changed in the rumen fluid, urine and feces of dairy cows fed different feed ratios were investigated. Methods: Eight Holstein cows were used in this study. Rumen fluid, urine, and feces were collected from the normal concentrate diet (NCD) (Italian ryegrass 80%: concentrate 20% in the total feed) and high concentrate diet (HCD) groups (20%: 80%) of dairy cows. Metabolite analysis was performed using proton nuclear magnetic resonance (NMR) identification, and statistical analysis was performed using Chenomx NMR software 8.4 and Metaboanalyst 4.0. Results: The two groups of rumen fluid and urine samples were separated, and samples from the same group were aggregated together. On the other hand, the feces samples were not separated and showed similar tendencies between the two groups. In total, 160, 177, and 188 metabolites were identified in the rumen fluid, urine, and feces, respectively. The differential metabolites with low and high concentrations were 15 and 49, 14 and 16, and 2 and 2 in the rumen fluid, urine, and feces samples, in the NCD group. Conclusion: As HCD is related to rumen microbial changes, research on different metabolites such as glucuronate, acetylsalicylate, histidine, and O-Acetylcarnitine, which are related to bacterial degradation and metabolism, will need to be carried out in future studies along with microbial analysis. In urine, the identified metabolites, such as gallate, syringate, and vanillate can provide insight into microbial, metabolic, and feed parameters that cause changes depending on the feed rate. Additionally, it is thought that they can be used as potential biomarkers for further research on subacute ruminal acidosis.

Effects of Different Roughage to Concentrate Ratios on the Changes of Productivity and Metabolic Profiles in Milk of Dairy Cows (조사료와 농후사료의 급여 비율이 착유유의 우유생산성과 대사산물에 미치는 영향)

  • Eom, Jun-Sik;Lee, Shin-Ja;Lee, Su-Kyoung;Lee, Yae-Jun;Kim, Hyun-Sang;Choi, You-Young;Ki, Kwang-Seok;Jeong, Ha-Yeon;Kim, Eun-Tae;Lee, Sang-Suk;Jeong, Chang-Dae;Lee, Sung-Sill
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.2
    • /
    • pp.147-160
    • /
    • 2019
  • This study was conducted to evaluate roughage to concentrate ratio on the changes of productivity and metabolic profiling in milk. Six lactating Holstein cows were divided into two groups, T1 group was fed low-concentrate diet (Italian ryegrass to concentrate ratio = 8:2) and T2 group was fed high-concentrate diet (Italian ryegrass to concentrate ratio = 2:8). Milk samples were collected and its components and metabolites were analyzed by 1H-NMR (Nuclear magnetic resonance). The result of milk components such as milk fat, milk protein, solids-not-fat, lactose and somatic cell count were not significantly different between two groups. In carbohydrate metabolites, trehalose and xylose were significantly higher (P<0.05) in T1 group, however lactose was not significantly different between two groups. In amino acid metabolites, glycine was the highest concentration however, there was no significant difference observed between two groups. Urea and methionine were significantly higher (P<0.05) in the T2 group. In lipid metabolites, carnitine, choline and O-acetylcarnitine there were no significant difference observed between the two groups. In benzoic acid metabolites, tartrate was significantly higher (P<0.05) in T2 group. In organic acid metabolites, acetate was significantly higher (P<0.05) in T1 group and fumarate was significantly higher (P<0.05) in T2 group. In the other metabolites, 3-methylxanthine was only significantly higher (P<0.05) in T2 group and riboflavin was only significantly higher (P<0.05) in T1 group. As a result, milk components were not significantly different between two groups. However, metabolites concentration in the milk was significantly different depends on roughage to concentrate ratio.