• Title/Summary/Keyword: acetate and lactate

Search Result 163, Processing Time 0.023 seconds

Effects of Calcium Lactate and Acetate on the Fermentation of Kimchi (칼슘락테이트 및 아세테이트가 김치의 숙성에 미치는 영향)

  • 김순동;김일두;박인경;김미향;윤광섭
    • Food Science and Preservation
    • /
    • v.6 no.3
    • /
    • pp.333-338
    • /
    • 1999
  • This studies were conducted to investigate the effects of calcium lactate and calcium acetate on the duality and shelf-life of kimchi. Kimchi was prepared by adding 0.5% mixtures of calcium lactate and calcium acetate at ratios of 04:0, 0.4:0.1, 0.3:0.2. 0.2:0.3, 0.1:0.4, 0:0.5, and fermented at 10$^{\circ}C$. The shelf-life of the kimchi by adding the mixtures of calcium lactate and calcium acetate at the ratio of 0.4:0.1, 0.3:0.2, 0.2:0.1 can be extended approximately 5 days. And, calcium contents of the kimchi tissue increased 46 to 66% against the control products. And also, demage of parenchyma cell was lower, the scores of crispness and overall taste of the kimchi treated were higher than those of the control.

  • PDF

Biocatalytic Oxidation-Reduction of Pyruvate and Ethanol by Weissella kimchii sk10 Under Aerobic and Anaerobic Conditions

  • Kang, Hye-Sun;Park, Sun-Mi;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.914-918
    • /
    • 2004
  • This study was carried out to analyze the metabolic flux of W. kimchii sk10 on pyruvate and ethanol as a carbon source. The sk10 grown on ethanol produced acetate under aerobic conditions rather than under anaerobic conditions. The lactate and acetate were produced on ethanol plus pyruvate by the sk10 grown under aerobic and anaerobic conditions, respectively. The resting cell of sk10 produced 99.1 mM acetate and 17.3 mM lactate under aerobic conditions and 51.1 mM acetate and 62.4 mM lactate under anaerobic conditions from ethanol plus pyruvate, respectively. This result is thought to be due to the difference in the $NADH/NAD^+$ ratio depending on the growth conditions. The 11-fold overproduction of NADH peroxidase results in a low $NADH/NAD^+$ratio under aerobic growth conditions. At the low $NADH/NAD^+$ ratio, the metabolic flux of pyruvate toward lactate has to be shifted to a flux toward acetate without NADH oxidation to $NAD^+$, and ethanol oxidation to acetate coupled to $NAD^+$ reduction to NADH has to be activated.

Esterification of Alcohols with Organic Acids during Distilled Spirit Distillation (증류식 소주 증류중 유기산에 의한 에스테르화)

  • 류이하;김영만
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.4
    • /
    • pp.295-299
    • /
    • 2002
  • The esterification of alcohols with acetic acid, lactic acid and citric acid was carried out in batch during the second distillation. Effect of various parameters, e.g. pH of reactant base spirit, temperature of distillation, time of distillation were studied. The parameter of distillation temperature was modified by atmospheric distillation and pressure distillation. The pressure(1.9 atm.) distillation was used in order to react and distill at high temperature. Compared with the base spirit concentration, ethyl acetate, ethyl lactate and iso-amyl acetate in esterification distillate increased by 2,890%, 6,410% and 52%, respectively. Major factors of the esterification with organic acids in distilled spirit making were molecular weight of the organic acid and pH of reactant base spirit.

Separation of Dehydrogenase Isozymes by Cellulose Acetate Electrophoresis (Cellulose Acetate 전기영동에 의한 수소이탈효소 Isozyme의 분리)

  • 박상윤;조동현
    • The Korean Journal of Zoology
    • /
    • v.15 no.3
    • /
    • pp.101-104
    • /
    • 1972
  • A simple and economical method for separation of lactate and malate dehydrogenase isozymes is described in detail. The method is based on cellulose acetate strip electrophoretic separation of the isozymes, tetrazolium reduction to purple formazan. Resolution is as good as in the experiment using expensive equipments.

  • PDF

Growth Properties of the Iron-reducing Bacteria, Shewanella putrefaciens IR-1 and MR-1 Coupling to Reduction of Fe(III) to Fe(II)

  • Park, Doo-Hyun;Kim, Byung-Hong
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.273-278
    • /
    • 2001
  • Shewanela, putrefaciene IR-1 and MR-1 were cultivated by using various combinations electron donor-acceptor, lactate-Fe(III) lactate-nitrate, pyruvate-FE(III), pyruvate-nitrate H$_2$ acetate-Fe(III) and H$_2$-acetate-nitrate. Both strains grew fermentatively on pyruvate and lactate but not on without and electron acceptor. In culture with Fe(III), both astrains grew on pyruvate and lactate but on H$_2$-acetate- CO$_2$. In cultivation with nitrate, both stains grew on pyruvate lactage and on H$_2$-acetate-CO$_2$ The growth yields of IR-1 pyruvate, pyruvate-Fe(III) and lactate-Fe(III) were about 3.4, 3.5, and 3.6(g cell/M substrate), respectively. From the growth properties of both strains on media with Fe(III) as an electron acceptor, the bacterial growth was confirmed not to be increased by addition of Fee(III) as an electron acceptor to the growth medium, which indicates a possibility that the dissimilatory reduction of Fe(III) to Fe(III) may not be coupled to free energy production.

  • PDF

Chemical Changes during Ensilage and In sacco Degradation of Two Tropical Grasses: Rhodesgrass and Guineagrass Treated with Cell Wall-degrading Enzymes

  • Zhu, Yu;Nishino, Naoki;Xusheng, Guo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.214-221
    • /
    • 2011
  • Effects of the cell wall-degrading enzymes derived from Acremonium cellulolyticus and Trichoderma viride on the silage fermentation and in sacco degradation of tropical grasses i.e. rhodesgrass (Chloris gayana Kunth. cv. Callide) and guineagrass (Panicum maximum Jacq. cv. Natsukaze) were investigated in laboratory-scale experiments. These two grasses were either treated with or without the enzymes before ensiling. Untreated rhodesgrass produced acetate fermentation silage (lactate, $13.0\;g\;kg^{-1}$ DM; acetate, $38.7\;g\;kg^{-1}$ DM) with high final pH value and $NH_3$-N content (5.84 and $215\;g\;kg^{-1}$ DM). Addition of enzymes significantly increased (p<0.01) the lactate production (lactate, 45.6; acetate, $34.0\;g\;kg-^{1}$ DM) and decreased (p<0.01) the pH and $NH_3$-N (4.80 and $154\;g\;kg^{-1}$ DM) in the ensiled forages when compared with the control silages. Untreated guineagrass was successfully preserved with a high lactate proportion (lactate, 45.5; acetate, $24.1\;g\;kg^{-1}$ DM), and the addition of enzymes further enhanced the desirable fermentation (lactate, $57.5\;g\;kg^{-1}$ DM; acetate, $19.4\;g\;kg^{-1}$ DM). The content of NDF was lowered (p<0.05) by enzymes in both silages, but the extent appeared greater in the enzyme-treated rhodesgrass (rhodesgrass, $48\;g\;kg^{-1}$ DM; guineagrass, $21\;g\;kg^{-1}$ DM). Changes in the kinetics of in sacco degradation showed that enzyme treatment increased (p<0.01) the rapidly degradable DM (rhodesgrass, 299 vs. $362\;g\;kg^{-1}$ DM; guineagrass, 324 vs. $343\;g\;kg^{-1}$ DM) but did not influence the potential degradation, lag time and degradation rate of DM and NDF in the two silages.

Metabolic Flux Shift of Weissella kimchii sk10 Grown Under Aerobic Conditions

  • Park, Sun-Mi;Kang, Hye-Sun;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.919-923
    • /
    • 2004
  • The sk10 isolated from kimchi was identified as W. kimchii on the basis of l6s-rDNA sequencing. Studies were made to analyze the metabolic flux shift of the sk10 on glucose under aerobic growth conditions. The sk10 produced 38.2 mM acetate, 16.3 mM ethanol, and 33.2 mM lactate under aerobic conditions, but 2.4 mM acetate, 48.0 mM ethanol, and 44.1 mM lactate under anaerobic conditions. The NADH peroxidase (NADH-dependent hydrogen peroxidase) activity of sk10 grown under aerobic conditions was 11 times higher than that under anaerobic conditions. Under the low ratio of $NADH/NAD^+$, the metabolic flux toward lactate and ethanol was shifted to the flux through acetate kinase without NADH oxidation. The kinds of enzymes and metabolites of sk10 were close to those in the pathway of Leuconostoc sp., but the metabolites produced under aerobic growth conditions were different from those of Leuconostoc sp. The stoichiometric balance calculated using the concentrations of metabolites and substrate was about 97%, coincident with the theoretical values under both aerobic and anaerobic conditions. From these results, it was concluded that the metabolic flux of W. kimchii sk10 was partially shifted from lactate and ethanol to acetate under aerobic conditions only.

Reduction of Acetate and Lactate Contributed to Enhancement of a Recombinant Protein Production in E. coli BL21

  • Kim, Tae-Su;Jung, Hyung-Moo;Kim, Sang-Yong;Zhang, Liaoyuan;Li, Jinglin;Sigdel, Sujan;Park, Ji-Hyun;Haw, Jung-Rim;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1093-1100
    • /
    • 2015
  • Acetate and lactate in growth media are detrimental to the production of Thermus maltogenic amylase (ThMA), a heterologous protein, as well as to the growth of recombinant Escherichia coli. Only 50 mM of acetate or 10 mM of lactate reduced 90% of specific ThMA activity. In this study, mutant E. coli strains blocked in the ackA-pta or ackA-pta and ldh pathways were created, characterized, and assessed for their culture performace in 300 L-scale fermentation. The ackApta and ldh double-mutant strain formed significantly less lactate and acetate, and produced a concomitant increase in the excretion of pyruvate (17.8 mM) under anaerobic conditions. The ackA-pta mutant strain accumulated significant acetate but had an approximately 2-fold increase in the formation of lactate. The ackA-pta and ldh double-mutant strain had superior overall performance in large-scale culture under suboptimal conditions, giving 67% higher cell density and 66% higher ThMA activity compared with those of the control strain. The doublemutant strain also achieved a 179% improvement in volumetric ThMA production.

Utilization of Substrate for the In vitro Lipid Synthesis in the Adipose Tissue of Hanwoo Steers

  • Song, M.K.;Sohn, H.J.;Hong, S.K.;Kim, H.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1560-1563
    • /
    • 2001
  • An ability to utilize the substrates (acetate, glucose and lactate) in the lipid synthesis was measured in vitro with the adipose tissues of 4 locations (subcutaneous, SUBC; intramuscular, INTR; tail and kidney, KIDN) in 12 Hanwoo (Korean native cattle) steers (26 and 28 months of ages, mean body weight 638.6 kg). The rates of lipid synthesis from acetate were higher than those from glucose in SUBC and ITRA adipose tissues, respectively. In contrast, the rates of lipid synthesis from glucose were higher than those from acetate in the adipose tissues of tail and KIDN, respectively. Lactate utilization was lowest in all the locations while that of acetate or glucose had the different trends of utilization in the lipogenesis. The rate of lipid synthesis from acetate was highest in the SUBC adipose tissue but was lowest in the KIDN while that from glucose was also higher in the SUBC adipose tissue than in the other tissue locations. The rate of lipid synthesis from lactate, however, was highest in the tail adipose tissue among the locations.

Effects of Volatile Substances on Rat Lactate Dehydrogenase and Cholinesterase (흡입물질이 흰쥐 Lactate Dehydrogenase와 Cholinesterase 활성변화에 미치는 영향)

  • Yoon, Soo-Hong;Park, Byoung-Yoon;Ha, Hun;Park, Eun-Ju
    • Environmental Analysis Health and Toxicology
    • /
    • v.10 no.1_2
    • /
    • pp.15-20
    • /
    • 1995
  • The effects of volatile substances inhalation on lactate dehydrogenase and cholinesterase in rats were investigated. Male Sprague-Dawley rats were exposed to marketed odorant, ethyl acetate and ethyl ether for 15 days. Enzyme activities were measured in serum and several tissues such as liver, lung, brain, heart, kidney and muscle to find differences of effects according to the organ. Cholinesterase activity in serum and most of tissues revealed time-dependent decrease in the case of marketed odorant inhalation. Especially in heart and kidney significant decrease was observed. Ethyl acetate exposure to rats revealed also decrease in serum and all tissues by 40% to 60%. Ethyl ether inhalation showed significant decrease by 30% to 50%. Lactate dehydrogenase activity was markedly increased in serum and similarly in heart, brain and kidney by exposure to marketed odorant. No changes were observed in liver. Ethyl acetate exposure to rats revealed increase in serum by about 200%, compared to normal group and in other tissues by 40% to 70% except in liver and muscle. Ethyl ether inhalation showed significant increase in serum by about 100%. There was no change in 'liver and slight increase in muscle.

  • PDF