Browse > Article
http://dx.doi.org/10.4014/jmb.1503.03023

Reduction of Acetate and Lactate Contributed to Enhancement of a Recombinant Protein Production in E. coli BL21  

Kim, Tae-Su (Department of Chemical Engineering, Konkuk University)
Jung, Hyung-Moo (BioNgene Co., Ltd)
Kim, Sang-Yong (BioNgene Co., Ltd)
Zhang, Liaoyuan (Department of Chemical Engineering, Konkuk University)
Li, Jinglin (Department of Chemical Engineering, Konkuk University)
Sigdel, Sujan (Department of Chemical Engineering, Konkuk University)
Park, Ji-Hyun (Department of Chemical Engineering, Konkuk University)
Haw, Jung-Rim (Institute of SK-KU Biomaterials, Konkuk University)
Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.7, 2015 , pp. 1093-1100 More about this Journal
Abstract
Acetate and lactate in growth media are detrimental to the production of Thermus maltogenic amylase (ThMA), a heterologous protein, as well as to the growth of recombinant Escherichia coli. Only 50 mM of acetate or 10 mM of lactate reduced 90% of specific ThMA activity. In this study, mutant E. coli strains blocked in the ackA-pta or ackA-pta and ldh pathways were created, characterized, and assessed for their culture performace in 300 L-scale fermentation. The ackApta and ldh double-mutant strain formed significantly less lactate and acetate, and produced a concomitant increase in the excretion of pyruvate (17.8 mM) under anaerobic conditions. The ackA-pta mutant strain accumulated significant acetate but had an approximately 2-fold increase in the formation of lactate. The ackA-pta and ldh double-mutant strain had superior overall performance in large-scale culture under suboptimal conditions, giving 67% higher cell density and 66% higher ThMA activity compared with those of the control strain. The doublemutant strain also achieved a 179% improvement in volumetric ThMA production.
Keywords
Large-scale bioreactor; maltogenic amylase; metabolically engineered; production; recombinant protein;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Lara AR, Leal L, Flores N, Gosset G, Bolivar F, Ramirez OT. 2006. Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnol. Bioeng. 93: 372-385.   DOI
2 Lee KM, Kalyani D, Tiwari MK, Kim TS, Dhiman SS, Lee JK, Kim IW. 2012. Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour. Technol. 123: 636-645.   DOI
3 Manabe K, Kageyama Y, Morimoto T, Ozawa T, Sawada K, Endo K, et al. 2011. Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl. Environ. Microbiol. 77: 8370-8381.   DOI
4 Oosterhuis NM, Kossen NW. 1984. Dissolved oxygen concentration profiles in a production-scale bioreactor. Biotechnol. Bioeng. 26: 546-550.   DOI
5 Palomares LA, Ramýrez OT. 2000. Bioreactor scale-down, pp. 174-183. In Spier RE (ed.). John Wiley & Sons, New York. Encyclopedia of Cell Technology.
6 Patel SKS, Kalia VC, Choi JH, Haw JR, Kim IW, Lee JK. 2014. Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J. Microbiol. Biotechnol. 24: 639-647.   DOI
7 Doelle H, Ewings K, Hollywood N. 1982. Regulation of glucose metabolism in bacterial systems, pp. 1-35. Microbial Reactions. Springer Berlin-Heidelberg.
8 Farmer WR, Liao JC. 1997. Reduction of aerobic acetate production by Escherichia coli. Appl. Environ. Microbiol. 63: 3205-3210.
9 Hahm DH, Pan J, Rhee JS. 1994. Characterization and evaluation of a pta (phosphotransacetylase) negative mutant of Escherichia coli HB101 as production host of foreign lipase. Appl. Microbiol. Biotechnol. 42: 100-107.   DOI
10 Ingram LO, Conway T. 1988. Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl. Environ. Microbiol. 54: 397-404.
11 Jagtap SS, Singh R, Kang YC, Zhao H, Lee JK. 2014. Cloning and characterization of a galactitol 2-dehydrogenase from Rhizobium legumenosarum and its application in D-tagatose production. Enzyme Microb. Technol. 58-59: 44-51.   DOI
12 Jensen EB, Carlsen S. 1990. Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, acetate, and salts. Biotechnol. Bioeng. 36: 1-11.   DOI
13 Jeong YJ, Woo SG, An CH, Jeong HJ, Hong YS, Kim YM, et al. 2015. Metabolic engineering for resveratrol derivative biosynthesis in Escherichia coli. Mol. Cells DOI: 10.14348/molcells.   DOI
14 Jung HM, Park KH, Kim SY, Lee JK. 2004. L-Glutamate enhances the expression of Thermus maltogenic amylase in Escherichia coli. Biotechnol. Prog. 20: 26-31.   DOI
15 Kim IC, Cha JH, Kim JR, Jang SY, Seo BC, Cheong TK, et al. 1992. Catalytic properties of the cloned amylase from Bacillus licheniformis. J. Biol. Chem. 267: 22108-22114.
16 Bauer KA, Ben-Bassat A, Dawson M, de la Puente VT, Neway JO. 1990. Improved expression of human interleukin-2 in high-cell-density fermentor cultures of Escherichia coli K-12 by a phosphotransacetylase mutant. Appl. Environ. Microbiol. 56: 1296-1302.
17 Chou CH, Bennett GN, San KY. 1994. Effect of modulated glucose uptake on high-level recombinant protein production in a dense Escherichia coli culture. Biotechnol. Prog. 10: 644-647.   DOI
18 Cakmakci E, Danis O, Demir S, Mulazim Y, Kahraman MV. 2013. Alpha-amylase immobilization on epoxy containing thiol-ene photocurable materials. J. Microbiol. Biotechnol. 23:205-210.   DOI
19 Cherrington CA, Hinton M, Chopra I. 1990. Effect of shortchain organic acids on macromolecular synthesis in Escherichia coli. J. Appl. Bacteriol. 68: 69-74.   DOI
20 Cherrington CA, Hinton M, Mead GC, Chopra I. 1991. Organic acids: chemistry, antibacterial activity and practical applications. Adv. Microb. Physiol. 32: 87-108.   DOI
21 Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645.   DOI
22 Dedhia NN, Hottiger T, Bailey JE. 1994. Overproduction of glycogen in Escherichia coli blocked in the acetate pathway improves cell growth. Biotechnol. Bioeng. 44: 132-139.   DOI
23 Diaz-Ricci JC, Tsu M, Bailey JE. 1992. Influence of expression of the pet operon on intracellular metabolic fluxes of Escherichia coli. Biotechnol. Bioeng. 39: 59-65.   DOI
24 Dittrich CR, Bennett GN, San KY. 2005. Characterization of the acetate-producing pathways in Escherichia coli. Biotechnol. Prog. 21: 1062-1067.   DOI
25 Altaras NE, Cameron DC. 2000. Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli.Biotechnol. Prog. 16: 940-946.   DOI
26 Yang YT, Aristidou AA, San KY, Bennett GN. 1999. Metabolic flux analysis of Escherichia coli deficient in the acetate production pathway and expressing the Bacillus subtilis acetolactate synthase. Metab. Eng. 1: 26-34.   DOI
27 Amanullah A, Buckland BC, Nienow AW. 2004. Mixing in the fermentation and cell culture industries, pp. 1071-1170. In Paul EL, Atiemo-Obeng VA, Kresta SM (eds.). Handbook of Industrial Mixing. John Wiley & Sons, New York.
28 Aristidou AA, San KY, Bennett GN. 1995. Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction. Biotechnol. Prog. 11: 475-478.   DOI
29 Tiwari MK, Singh RK, Gao H, Kim T, Chang S, Kim HS, Lee JK. 2014. pH-rate profiles of L-arabinitol 4-dehydrogenase from Hypocrea jecorina and its ap p lication in L-xylulose production. Bioorg. Med. Chem. Lett. 24: 173-176.   DOI
30 Tiwari MK, Singh RK, Singh R, Jeya M, Zhao H, Lee JK. 2012. Role of conserved glycine in zinc-dependent medium chain dehydrogenase/reductase superfamily. J. Biol. Chem. 287: 19429-19439.   DOI
31 Yee L, Blanch HW. 1992. Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Biotechnology (NY) 10: 1550-1556.   DOI
32 Zheng Y, Yu X, Li T, Xiong X, Chen S. 2014. Induction of D-xylose uptake and expression of NAD(P)H-linked xylose reductase and NADP+-linked xylitol dehydrogenase in the oleaginous microalga Chlorella sorokiniana. Biotechnol. Biofuels 7: 125-133.
33 Ramachandran P, Nguyen NP, Choi JH, Kang YC, Jeya M, Lee JK. 2013. Optimization of β-glucosidase production by a strain of Stereum hirsutum and its application in enzymatic saccharification. J. Microbiol. Biotechnol. 23: 351-356.   DOI
34 Reinscheid DJ, Schnicke S, Rittmann D, Zahnow U, Sahm H, Eikmanns BJ. 1999. Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase. Microbiology 145: 503-513.   DOI
35 Singh RK, Tiwari MK, Singh R, Haw JR, Lee JK. 2014. Immobilization of L-arabinitol dehydrogenase on aldehydefunctionalized silicon oxide nanoparticles for L-xylulose production. Appl. Microbiol. Biotechnol. 98: 1095-1104.   DOI
36 Sandoval-Basurto EA, Gosset G, Bolivar F, Ramirez OT. 2005. Culture of Escherichia coli under dissolved oxygen gradients simulated in a two-compartment scale-down system: metabolic response and production of recombinant protein. Biotechnol. Bioeng. 89: 453-463.   DOI
37 Schweder T, Kruger E, Xu B, Jurgen B, Blomsten G, Enfors SO, Hecker M. 1999. Monitoring of genes that respond to process-related stress in large-scale bioprocesses. Biotechnol. Bioeng. 65: 151-159.   DOI
38 Shimizu N, Fukuzono S, Fujimori K, Nishimura N, Odawara Y. 1988. Fed-batch cultures of recombinant Escherichia coli with inhibitory substance concentration monitoring. J. Ferment. Technol. 66: 187-191.   DOI
39 Takahashi CM, Takahashi DF, Carvalhal ML, Alterthum F. 1999. Effects of acetate on the growth and fermentation performance of Escherichia coli KO11. Appl. Biochem. Biotechnol. 81: 193-203.   DOI
40 Tiwari MK, Kalia VC, Kang YC, Lee JK. 2014. Role of a remote leucine residue in the catalytic function of polyol dehydrogenase. Mol. Biosyst. 10: 3255-3263.   DOI
41 Ko Y, Ashok S, Ainala SK, Sankaranarayanan M, Chun AY, Jung GY, Park S. 2014. Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions. Biotechnol. J. 9: 1526-1535.   DOI
42 Lara AR, Galindo E, Ramirez OT, Palomares LA. 2006. Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells. Mol. Biotechnol. 34: 355-381.   DOI