• Title/Summary/Keyword: accuracy standard

Search Result 2,399, Processing Time 0.027 seconds

Assessing the Precision of a Jackknife Estimator

  • Park, Dae-Su
    • Management Science and Financial Engineering
    • /
    • v.9 no.1
    • /
    • pp.4-10
    • /
    • 2003
  • We introduce a new estimator of the uncertainty of a jackknife estimate of standard error: the jack-knife-after-jackknife (JAJ). Using Monte Carlo simulation, we assess the accuracy of the JAJ in a variety of settings defined by statistic of interest, data distribution, and sample size. For comparison, we also assess the accuracy of the jackknife-after-bootstrap (JAB) estimate of the uncertainty of a bootstrap standard error. We conclude that the JAJ provides a useful new supplement to Tukey's jackknife, and the combination of jackknife and JAJ provides a useful alternative to the combination of bootstrap and JAB.

Assessing the Precision of a Jackknife Estimator

  • Park, Daesu
    • Management Science and Financial Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • We introduce a new estimator of the uncertainty of a jackknife estimate of standard error: the jack-knife-after-jackknife (JAJ). Using Monte Carlo simulation, we assess the accuracy of the JAJ in a variety of settings defined by statistic of interest, data distribution, and sample size. For comparison, we also assess the accuracy of the jackknife-after-bootstrap (JAB) estimate of the uncertainty of a bootstrap standard error. We conclude that the JAJ provides a useful new supplement to Tukey's jackknife, and the combination of jackknife and JAJ provides a useful alternative to the combination of bootstrap and JAB.

Development of Effective Test Method for Positioning Accuracy of Armed Vehicle Inertial Navigation System (기동화력장비 관성항법장치의 효과적인 위치정확도 시험방법 개발)

  • Kim, Sung Hoon;Bae, In Hwa;Kim, Sang Boo
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.619-632
    • /
    • 2023
  • Purpose: The main function of INS (Inertial Navigation System) is to measure the position of an armed vehicle and its performance is confirmed through the positioning accuracy test of Korean Defense Standards (KDS). The current standards, however, do not provide clear test methods and the conditions for performing positioning accuracy tests. Accordingly, the purpose of this study is to develop a new method for positioning accuracy test which would be effective. Methods: In this study, a new INS positioning accuracy test method is suggested based on the analysis of test data collected through a statistical experiment known as central composite design. For the positioning accuracy experiment of K105A1, a self-propelled artillery, two factors of driving velocity and driving distance are considered. Results: Based on the analysis of experimental data, a regression model for the positioning error is fitted and the positioning accuracy test of INS is so developed to maximize the positioning error. The standard proximity rate is used as an additional test criterion to evaluate the performance level of INS. Conclusion: The proposed new positioning accuracy test for INS has the advantage of finding the nonconforming items effectively. It is also expected to be utilized for the other similar INS positioning accuracy tests.

Development of A Standard Time Data for Shirt Sewing Operations (셔츠 봉제 작업을 위한 표준시간자료의 개발)

  • Kim, Dong-Won;Kang, Mi-Young
    • IE interfaces
    • /
    • v.6 no.2
    • /
    • pp.91-101
    • /
    • 1993
  • Developed in this paper is a standard time data for shirt sewing operations in the apparel-making industry. Since this data is made of formula developed for each unit operation and includes the formula for the machine time calculation, users could use it for obtaining the normal or standard time without any special efforts. In addition, this data handles the variations due to the design changes of a shirt through the parameters in the formula. compared with the MTM-1. The standard time data developed is shown to be easier and faster in determining the standard time with acceptable accuracy.

  • PDF

The Accuracy of the Radiographic Method in Root Canal Length Measurement (근광장 측정에서 방사선 사진술의 정확도)

  • Jo Eun-Young;Park Chang-Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.2
    • /
    • pp.471-489
    • /
    • 1998
  • For the successful endodontic treatment, root canal should be cleaned thoroughly by accurate mechanical and chemical canal preparation and sealed completely with canal filling material without damaging the periapical tissues. The accuracy of the root canal length measurement is a prerequisite for the success of the endodontic treatment, and the root canal length is often determined by the standard periapical radiographs and digital tactile sense. In this study, the accuracy and the clinical usefulness of Digora/sup (R)/, an intraoral digital imaging processor and the conventional standard radiographs were compared by measuring the length from the top of the file to the root apex. 30 single rooted premolars were invested in a uniformly sized blocks and No.25 K-file was inserted into and fixed in each canal. Each block was placed in equal distance and position to satisfy the principle of the bisecting angle and paralleling techniques and Digora/sup (R)/ system's image and standard periapical radiographs were taken. Each radiograph was examined by 3 different observers by measuring the length from top of the file to the root apex and each data was compared and analyzed. The results were as follows; 1. In the bisecting angle technique, the average difference between the Digora/sup (R)/ system and standard periapical radiograph was 0.002 mm and the standard deviation was 0.341 mm which showed no statistically significant difference between the two systems(p>0.05). Also, in the paralleling technique, the average difference between these two system was 0.007 mm and the standard deviation was 0.323 mm which showed no statistically significant difference between the two systems(p>0.05). 2. In Digora/sup (R)/ system, the average difference between the bisecting angle and paralleling technique was -0.336 mm and the standard deviation was 0.472 mm which showed a statistically significant difference between the two techniques(p<0.05). Also, in the standard periapical radiographs, the average difference between the bisecting angle and paralleling technique was 0.328 mm and the standard deviation was 0.517 mm which showed a statistically significant difference between these two techniques(p<0.05). 3. In Digora/sup (R)/ system and the standard periapical radiographs. there was a statistically significant difference between the measurement using the bisecting angle technique and the actual length(p<0.05), But there was no statistically significant difference between the measurement using the paralleling technique and the actuallength(p>0.05). In conclusion. the determination of the root canal length by using the Digora/sup (R)/ system can give us as good an image as the standard periapical radiograph and using the paralleling technique instead of the bisecting angle technique can give a measurement closer to the actual canal length. thereby contributing to a successful result. Also. considering the advantages of the digital imaging processor such as decreasing the amount of exposure to the patient. immediate use of the image. magnification of image size. control of the contrast and brightness and the ability of storing the image can give us good reason to replace the standard periapical radiographs.

  • PDF

The Methodological Review on the Accuracy Study of Questionnaire for Sasang Constitution Diagnosis (체질진단설문지 정확률 연구의 연구방법론 고찰)

  • Kim, Sang-Hyuk;Jang, Eun-Su;Koh, Byung-Hee
    • Journal of Sasang Constitutional Medicine
    • /
    • v.24 no.3
    • /
    • pp.1-16
    • /
    • 2012
  • Objectives For the methodological review on the accuracy study of questionnaire for Sasang constitution diagnosis, we searched the various diagnostic accuracy study of the questionnaires for Sasang constitution. Methods We searched MEDLINE, the Cochrane Library, KISS, and DBPIA. Additionally, We hand-searched the main oriental medical journals. All articles were independently reviewed and selected by two evaluators. And selected articles were assessed by "Quality Assessment of Diagnostic Accuracy Studies Tool"(QUADAS Tool) for the methodological review. Results The twenty eight studies initially identified studies were included in the methodological review. The part of "Acceptable reference standard", "Uninterpretable results reported" and "Withdrawals explained" was very weak in the risk of bias. The part of "Representative spectrum", "Acceptable delay between tests", "Incorporation avoided", "Reference standard results blinded", "Index test results blinded" was unclear in the description. Conclusions For the further study on the accuracy study of Sasang constitution diagnosis, we have to improve the aforementioned errors. Additionally, the checklist for the description of study might be needed.

Application of AI models for predicting properties of mortars incorporating waste powders under Freeze-Thaw condition

  • Cihan, Mehmet T.;Arala, Ibrahim F.
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.187-199
    • /
    • 2022
  • The usability of waste materials as raw materials is necessary for sustainable production. This study investigates the effects of different powder materials used to replace cement (0%, 5% and 10%) and standard sand (0%, 20% and 30%) (basalt, limestone, and dolomite) on the compressive strength (fc), flexural strength (fr), and ultrasonic pulse velocity (UPV) of mortars exposed to freeze-thaw cycles (56, 86, 126, 186 and 226 cycles). Furthermore, the usability of artificial intelligence models is compared, and the prediction accuracy of the outputs is examined according to the inputs (powder type, replacement ratio, and the number of cycles). The results show that the variability of the outputs was significantly high under the freeze-thaw effect in mortars produced with waste powder instead of those produced with cement and with standard sand. The highest prediction accuracy for all outputs was obtained using the adaptive-network-based fuzzy inference system model. The significantly high prediction accuracy was obtained for the UPV, fc, and fr of mortars produced using waste powders instead of standard sand (R2 of UPV, fc and ff is 0.931, 0.759 and 0.825 respectively), when under the freeze-thaw effect. However, for the mortars produced using waste powders instead of cement, the prediction accuracy of UPV was significantly high (R2=0.889) but the prediction accuracy of fc and fr was low (R2fc=0.612 and R2ff=0.334).

The Current State and the Development Direction of the Studies on Improving of Broadcasting Language (방송언어 개선 연구의 현황과 발전 방향)

  • CHO, TAE-RIN
    • Korean Linguistics
    • /
    • v.74
    • /
    • pp.169-197
    • /
    • 2017
  • The purpose of this paper is to seek the development direction of the studies on improving of broadcasting language, by examining the fruits and the limitations of existing research. Firstly, this paper makes sure that the study on improving of broadcasting language is one of the subtypes of study on broadcasting language. Then the current state of the studies on improving of broadcasting language is analyzed by genre, problem, and assessment standard. According to this analysis, existing research is concentrated too much in certain genres such as current affairs and news, but also in certain problems such as accuracy or publicness infractions. Finally, this paper concludes by suggesting three development directions of the future studies on improving of broadcasting language as follows: (1) Accuracy or publicness related problems need no more studies on themselves but continuous and systematic monitoring and institutional device. (2) We need more interest and research on language used in certain genres such as TV home shopping and commercial break. (3) Fairness or soundness related problems need more studies on themselves, because the judgement or assessment standard of these problems is not only difficult to find out, but also in need of viewer and listener awareness investigation and social agreement procedure.

An Analysis of Performance Error of Roundness Measuring Instrument -by phase different method- (眞圓度 測定器의 誤差特性에 대한 解析 -위상차법-)

  • 한응교;허문석;박익근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.31-37
    • /
    • 1988
  • A phase different method to evaluate the instrument error of roundness measuring instrument and the form error of specimens for the calibration of the instrument is used. An instrument with a rotary table supported by an air bearing was calibrated by using the standard balls as a standard. The calibration was carried out repeatedly by setting the same ball in 12 phase angles(per 30.deg.) on the table and by recording their roundness errors with a magnification of 100,000 times. As a result of data analysis of all the observations, readout at each of 144 orientations(per 2.5.deg.) from recorded data file, the error of performance of the instrument and the specimens are separated. In the particular instrument used in the present experiment, the error of the instrument was determined with the accuracy of 0.0164 (.mu.m) and the form error of the specimens was determined with the accuracy of 0.0264,0.0172(.mu.m), respectively. If the instrument was calibrated by using the above specimens, then the accuracy of the measurement of roundness error can be improved to about 0.017 (.mu.m).

  • PDF

An Accuracy Analysis of the 3D Automatic Body Measuring Machine (3차원 자동체형계측기 정밀도 검사)

  • Jeon, Soo-Hyung;Kwon, Suk-Dong;Park, Se-Jung;Kim, Jung-Yang;Song, Jung-Hoon;Kim, Hyun-Jin;Kim, Jong-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2008
  • 1. Objectives The Body Shape and Feature is one of the important standard for classification of Sasang Constitutions. In order to evaluate one's Body Shape and Feature objectively we have been developing the Body Measuring Machine. Now we develop the 3D Automatic Body Measuring Machine(3D-ABMM). So we make an analysis of the 3D-ABMM's Accuracy. 2. Methods By using the 3D-ABMM and Vivid 9i(3D laser scanner, Konica Minolta) we have a surface scan of the three objects which are the upper body of the female and male Manikin and a male model. We overlap each scan data using the RapidForm2006 (3D scan data solution, INUS Technology) and calculate the average distance and standard deviation between the same point of each scan data. 3. Results and Conclusions In the female Manikin, the average distance is 0.84mm and the standard deviation is 1.16mm and the maximum distance is 10.68mm. In the male Manikin, the average distance is 1.12mm and the standard deviation is 1.19mm and the maximum distance is 12.00mm. In the male model, the average distance is 3.26mm and the standard deviation is 2.59mm and the maximum distance is 12.75mm. From the results, 3D-ABMM has good accuracy for scanning body and will be a usable hardware of the 3D Automatic Body Analysis Machine.

  • PDF