링크드 데이터를 이용한 인터랙티브 요리 비디오 질의 서비스 시스템 (An Interactive Cooking Video Query Service System with Linked Data)
-
- 지능정보연구
- /
- 제20권3호
- /
- pp.59-76
- /
- 2014
스마트 미디어 장치의 발달로 인하여 시공간적인 제약이 없이 비디오를 시청 가능한 환경이 제공됨에 따라 사용자의 시청행태가 수동적인 시청에서 능동적인 시청으로 계속해서 변화하고 있다. 사용자는 비디오를 시청하면서 비디오를 볼 뿐 아니라 관심 있는 내용에 대한 세부적인 정보를 검색한다. 그 결과 사용자와 미디어 장치간의 인터랙션이 주요 관심사로 등장하였다. 이러한 환경에서 사용자들은 일방적으로 정보를 제공해주는 것보다는 자신이 원하는 정보를 웹 검색을 통해 사용자 스스로 정보를 찾지 않고, 쉽고 빠르게 정보를 얻을 수 있는 방법의 필요성을 인식하게 되었으며 그에 따라 인터랙션을 직접 수행하는 것에 대한 요구가 증가하였다. 또한 많은 정보의 홍수 속에서 정확한 정보를 얻는 것이 중요한 이슈가 되었다. 이러한 사용자들의 요구사항을 만족시키기 위해 사용자 인터랙션 기능을 제공하고, 링크드 데이터를 적용한 시스템이 필요한 상황이다. 본 논문에서는 여러 분야 중에서 사람들이 가장 관심 있는 분야중 하나인 요리를 선택하여 문제점을 발견하고 개선하기 위한 방안을 살펴보았다. 요리는 사람들이 지속적인 관심을 갖는 분야이다. 레시피, 비디오, 텍스트와 같은 요리에 관련된 정보들이 끊임없이 증가하여 빅 데이터의 한 부분으로 발전하였지만 사용자와 요리 콘텐츠간의 인터랙션을 제공하는 방법과 기능이 부족하고, 정보가 부정확하다는 문제점을 가지고 있다. 사용자들은 쉽게 요리 비디오를 시청할 수 있지만 비디오는 단 방향으로만 정보를 제공하기 때문에 사용자들의 요구사항을 충족시키기 어렵고, 검색을 통해 정확한 정보를 얻는 것이 어렵다. 이러한 문제를 해결하기 위하여 본 논문에서는 요리 비디오 시청과 동시에 정보제공을 위한 UI(User Interface), UX(User Experience)를 통해 사용자의 편의성을 고려한 환경을 제시하고, 컨텍스트에 맞는 정확한 정보를 제공하기 위해 링크드 데이터를 이용하여 사용자와 비디오 간에 인터랙션을 위한 요리보조 서비스 시스템을 제안한다.
자동차 번호인식을 위해선 수많은 번호판 데이터가 필요하다. 번호판 데이터는 과거의 번호판부터 최신의 번호판까지 균형 있는 데이터의 확보가 필요하다. 하지만 실제 과거의 번호판부터 최신의 번호판의 데이터를 획득하는데 어려움이 있다. 이러한 문제를 해결하기 위해 인조 번호판을 이용하여 자동차 번호판을 생성하여 딥러닝을 통한 번호판 인식 연구가 진행되고 있다. 하지만 인조 데이터는 실제 데이터와 차이가 존재하며, 이러한 문제를 해결하기 위해 다양한 데이터 증강 기법을 사용한다. 기존 데이터 증강 방식은 단순히 밝기, 회전, 어파인 변환, 블러, 노이즈등의 방법을 사용하였다. 본 논문에서는 데이터 증강 방법으로 인조데이터를 실제 데이터 스타일로 변환하는 스타일 변환 방법을 적용한다. 또한 실제 번호판 데이터는 원거리가 많고 어두운 경우 잡음이 많이 존재한다. 단순히 입력데이터를 가지고 문자를 인식할 경우 오인식의 가능성이 높다. 이러한 경우 문자인식 향상을 위해 본 논문에서는 문자인식을 위하여 화질개선 방법으로 DeblurGANv2 방법을 적용하여 번호판 인식 정확도를 높였다. 번호판 검출 및 번호판 번호인식을 위한 딥러닝의 방식은 YOLO-V5를 사용하였다. 인조 번호판 데이터 성능을 판단하기 위해 자체적으로 확보한 자동차 번호판을 수집하여 테스트 셋을 구성하였다. 스타일 변환을 적용하지 않은 번호판 검출이 0.614mAP를 기록하였다. 스타일 변환을 적용한 결과 번호판 검출 성능이 0.679mAP 기록하여 성능이 향상되었음을 확인하였다. 또한 번호판 문자인식에는 화질 개선을 하지 않은 검출 성공률은 0.872를 기록하였으며, 화질 개선 후 검출 성능이 0.915를 기록하여 성능 향상이 되었음을 확인 하였다.
현행 비탈면 앵커공법의 보강성능평가는 앵커 두부와 지반밀착도, 앵커 두부의 균열 및 파손에 대해서 정성적으로 성능을 평가하고 있다. 이로 인해 성능저하 상태 점검을 위한 정량적 데이터베이스화와 이를 이용한 시간이력 관리는 어려운 실정이다. 이에 본 연구에서는 비탈면에 설치된 앵커공법의 정량적 유지관리에 활용하기 위하여 UAS 영상과 지상 LiDAR의 사각지대를 보완하기 위한 SfM기반의 조합 3차원 수치모형을 구현하여 손상인자의 수치데이터를 검출하였다. 비탈면과 같은 수직구조물에서 상대적으로 높은 z 좌표 오차를 갖는 UAS 3차원 수치모형에서 사각지대 데이터 공백을 상호 보완하기 위하여 지상 LiDAR 스캔 데이터를 조합하였고 z 좌표 정확도의 향상을 확인하였다. 비탈면에 설치된 10공의 앵커에 임의로 손상을 발생시킨 후에 3차원 수치모형을 구축하였고 정사투영을 통해 균열, 파손, 회전변위와 지반 밀착도에 대한 수치 값을 검출하였다. 8K 해상도로 균열 실측값과 비교시 ±0.05mm의 오차범위에서 0.3mm 미만의 균열 검출이 가능하였다. 앵커 두부의 최대 파손 면적은 설계대비 3% 이내로 발생된 것을 확인하였고, 파손부의 체적 또한 검출하였다. 특히 z 좌표 데이터가 중요한 지반밀착도의 경우 UAS 3차원 수치모형에서는 사각지대로 인한 데이터 공백으로 측정이 불가능하였지만 지상 LiDAR를 조합할 경우 앵커 저면과 지반의 불규칙한 표면에서 표고차 확인이 가능하여 임의의 20개 지점의 평균 표고차를 지반밀착도로 도출하였다. 또한, 앵커 두부의 1° 미만의 회전각과 이동 변위 값도 검출하였다. 이에 본 연구에서 구축한 3차원 수치모형에서 앵커 손상인자의 정량적 데이터 추출이 가능하였고, 이를 데이터베이스화 한다면 정량적 평가지표의 기초자료로써 활용이 가능할 것으로 판단된다.
인터넷의 발달을 통해 지속적으로 인스턴트 커뮤니케이션이 발달해왔다. 인스턴트 커뮤니케이션에서 가장 대표적인 것이 메신저 애플리케이션이다. 메신저 애플리케이션에서 이모티콘은 송신자의 감정 전달을 보완하기 위해 활용됐다. 메신저 애플리케이션 송신자의 감정 전달에 약한 모습을 보이는데 그 이유는 면대면 커뮤니케이션이 아니기 때문이다. 이모티콘은 과거 화자의 기분 상태를 나타내는 기호로만 사용됐다. 그러나 현재는 이모티콘은 감정 전달 뿐만 아니라 개인의 특성과 개성을 나타내고 싶어 하는 소비자의 심리를 반영하는 형태로 발전해가고 있다. 이모티콘의 사용 환경이 개선되었고, 이모티콘 자체가 발전함으로써 이모티콘 자체에 대한 관심도는 증가하였다. 대표적인 예로 카카오톡, 라인, 애플 등에서 서비스를 진행하고 있으며, 관련 컨텐츠 상품의 매출도 지속적으로 증가할 것으로 전망하고 있다. 이모티콘 자체의 관심도 증가와 관련 사업의 성장세에도 불구하고 현재 적절한 이모티콘 추천 시스템이 부재하다. 국내 점유율 90% 이상의 메신저 애플리케이션인 카카오톡조차 단순히 인기 순이나 최근 순, 혹은 간략한 카테고리 별로 분류한 정도이다. 소비자들은 원하는 이모티콘을 찾기 위해서 스크롤을 계속해서 내려야 하는 불편함이 있으며, 본인이 원하는 감성의 이모티콘을 찾기 어렵다. 소비자들이 편의성 향상과 기업의 이모티콘 관련 사업의 판매 매출 증가를 위해 소비자가 원하는 이모티콘을 추천해줄 수 있는 이모티콘 추천 시스템이 필요하다. 적절한 이모티콘을 추천하기 위해서 소비자가 이모티콘을 보고 느낀 감성에 대해 정량화할 필요성이 있다. 정량화를 통해 소비자가 원하는 이모티콘 셋이 가진 특징과 감성에 대해 분석할 수 있으며, 분석 결과를 토대로 소비자에게 이모티콘을 추천할 수 있다. 이모티콘은 메타데이터화의 방법으로 정량화가 가능하다. 메타데이터화 방법은 빅데이터 시대에 비정형, 반정형 데이터에 대해서 의미를 추출하기 위해 데이터를 구조화 혹은 조직화하는 작업이다. 비정형 데이터인 이모티콘을 메타데이터화를 통해 구조화한다면, 쉽게 소비자가 원하는 감성 형태로 분류할 수 있을 것으로 생각한다. 정확한 감성을 추출하기 위해 감정과 관련된 선행 연구를 통해 7개의 공통 감성 형용사와 한국어에서만 나타나는 은유 혹은 표현적 특징들을 반영하기 위해 하위 세부 표현들까지 고려했다. 이모티콘의 가장 큰 특징인 캐릭터를 기반으로 "표상", "형상", "색상"의 범주에서 세부 하위 감성들을 수집했다. 정확도 높은 추천 시스템을 설계하기 위해 감성 지표만이 아니라 객관적 지표도 고려하였다. 메타데이터화 방법을 통해 이모티콘이 갖고 있는 캐릭터의 특징을 객관적 지표로 14개, 감성 지표로 활용하기 위해 감성 형용사를 36개를 추출하였다. 추출된 감성 형용사는 대비되는 형용사로 구성하여 총 18개로 줄였으며, 18개의 감성 형용사는 카카오톡의 이모티콘을 인기 순으로 임의의 40개 셋을 대상으로 측정하였다. 측정을 위해 이모티콘을 평가할 조사 대상자 온라인으로 모집하였고, 277명의 20~30대의 이모티콘을 구매한 경험이 있는 소비자를 대상으로 설문을 진행하였다. 설문응답자에게 서로 다른 5개의 이모티콘 셋을 평가하도록 하였다. 평가 결과 수집된 18개의 감정 형용사는 요인분석을 통해 감성 지표 요인으로 추출하였다. 추출된 소비자 감성 지표의 요인은 "코믹", "부드러움", "모던함", "투명함"이었다. 이모티콘의 객관적 지표와 감성 지표 요인을 활용하여 소비자 만족과의 관계를 분석하였고, 객관적 지표와 감성 지표 간의 관계도 분석하였다. 이 과정에서 객관적 지표가 소비자 태도에 바로 영향을 주는 것이 아니라 감성 지표 요인을 통해 소비자 태도에 영향을 주는 매개 효과가 있음을 확인하였다. 분석 결과는 소비자의 감성 평가 메커니즘을 밝혀냈고, 소비자의 이모티콘 감성 평가 메커니즘은 객관적 지표가 감성 지표 요인에 영향을 미치며, 감성 지표 요인은 소비자 만족에 영향을 미치는 관계였다. 따라서 감성 지표 요인의 네 가지만으로 이모티콘 추천 시스템을 설계하였고, 추천 방법은 각 감성과의 거리를 유클리디안 거리로 측정하여 거리의 차가 0에 가까울수록 비슷한 감성으로 정의하였다. 본 연구에서 제안한 이모티콘 시스템의 검증을 위해 각 감성 지표 요인과 소비자 만족의 평균을 지표 값으로 활용하여 각 이모티콘 셋의 감성 패턴을 그래프로 비교하였고, 추천된 이모티콘들과 선택된 이모티콘이 대체로 비슷한 패턴을 그리는 것을 확인하였다. 정확한 검증을 위해 사전 조사하였던 소비자를 대상으로 이모티콘 추천 시스템이 제시한 결과와 유사하게 평가하였는지 유사 순위를 세 구간으로 나누어 비교하였고, 순위별 예측 정확도는 결과 1순위 81.02%, 2순위 76.64%, 3순위 81.63%였다. 본 연구의 결과는 학문적, 실무적으로 다양한 분야에서 활용 가능한 방법론을 제시하였으며, 기존에 없던 이모티콘 추천 시스템의 설계를 통해 소비자에게는 편의와 이모티콘을 서비스하는 기업에는 매출증대의 효과를 가져올 것으로 예상한다. 그리고 본 연구를 통해 지능형 이모티콘 시스템으로 발전할 수 있는 단초를 제공했다는 점에서 의미가 있다. 본 연구에서 제안한 감성 요인들을 활용하여 감성 라이브러리로 사용함으로써, 새로운 이모티콘 출시 시 감성 평가의 지표로 활용할 수 있다. 축적된 감성 라이브러리와 기업의 판매 데이터, 매출 정보, 소비자 데이터를 결합하여 본 연구에서 제안한 추천 시스템을 복합형 추천 시스템으로 발전시켜 단순 소비자의 편의성이나 매출 증가뿐만 아니라 기업에서 전략적으로 활용 가능한 지적 자산으로 활용할 수 있을 것으로 판단한다.
최근 알파고의 등장으로 딥러닝 기술에 대한 관심이 고조되고 있다. 딥러닝은 향후 미래의 핵심 기술이 되어 일상생활의 많은 부분을 개선할 것이라는 기대를 받고 있지만, 주요한 성과들이 이미지 인식과 자연어처리 등에 국한되어 있고 전통적인 비즈니스 애널리틱스 문제에의 활용은 미비한 실정이다. 실제로 딥러닝 기술은 Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Deep Boltzmann Machine (DBM) 등 알고리즘들의 선택, Dropout 기법의 활용여부, 활성 함수의 선정 등 다양한 네트워크 설계 이슈들을 가지고 있다. 따라서 비즈니스 문제에서의 딥러닝 알고리즘 활용은 아직 탐구가 필요한 영역으로 남아있으며, 특히 딥러닝을 현실에 적용했을 때 발생할 수 있는 여러 가지 문제들은 미지수이다. 이에 따라 본 연구에서는 다이렉트 마케팅 응답모델, 고객이탈분석, 대출 위험 분석 등의 주요한 분류 문제인 이진분류에 딥러닝을 적용할 수 있을 것인지 그 가능성을 실험을 통해 확인하였다. 실험에는 어느 포르투갈 은행의 텔레마케팅 응답여부에 대한 데이터 집합을 사용하였으며, 전통적인 인공신경망인 Multi-Layer Perceptron, 딥러닝 알고리즘인 CNN과 RNN을 변형한 Long Short-Term Memory, 딥러닝 모형에 많이 활용되는 Dropout 기법 등을 이진 분류 문제에 활용했을 때의 성능을 비교하였다. 실험을 수행한 결과 CNN 알고리즘은 비즈니스 데이터의 이진분류 문제에서도 MLP 모형에 비해 향상된 성능을 보였다. 또한 MLP와 CNN 모두 Dropout을 적용한 모형이 적용하지 않은 모형보다 더 좋은 분류 성능을 보여줌에 따라, Dropout을 적용한 CNN 알고리즘이 이진분류 문제에도 활용될 수 있는 가능성을 확인하였다.
오늘날 사진은 새로운 테크놀로지 형태인 디지털 이미지 프로세싱 앞에 심각한 정체성 위기와 존재론적 딜레마에 봉착했다. 사진은 그동안 우리에게 세상을 새롭게 바라보는 방법을 제공하고, 또 우리 스스로 주변을 돌아볼 수 있는 자각을 주었으며, 나아가 삶의 리얼리티의 본질을 재인식시키는데 크게 기여했다. 그런 사진의 기능이 오늘날 무력화되고 있다. 디지털 테크놀로지의 출현으로 사진은 더 이상 사실의 기록, 결백의 증거, 그리고 리얼리티의 거울로서 간주되지 않는다. 오히려 유희의 도구 혹은 우리가 사는 세계의 환영과 기쁨을 창조하는 수단으로 간주된다. 그러나, 디지털 테크놀로지의 출현은 이제 비로소 사진의 존재론적 당위성과 정체성의 문제를 냉정히 돌아보게 한다. 본 논고는 전자시뮬레이션 시대 새로운 이미지 생산의 첨병으로 등장한 디지털 이미지의 존재론적 측면을 규명하는데 있다. 이를 위해 인류의 첫 번째 프로그램 미학으로 말해지는 사진과 첨단테크놀로지 미학으로 말해지는 디지털 이미지와의 관계를 기계미학적 관점에서 살펴보려 한다. 특히 올드미디어(사진)와 뉴미디어(디지털) 사이에 갈등 구조를 자본주의 역사관과 물질적 관점에서 살펴보려 한다. 본 논고는 이를 위해 우선 사진의 정체성 위기와 존재론적 위협이 어디로부터 발현된 것인지를 살피고, 또 지금까지 생산된 매체 미학적 담론들이 어떤 비평적 쟁점 속에 놓였는지를 살피고자 한다. 특히 사진이 강점으로 여긴 존재론적 인덱스와 생성론적 텍스트에 주목하여 사진 재현의 기반인 사실적 기록, 명료한 증거, 그리고 기술적 정교성이 어떤 기계미학의 층위에 있는지를 디지털 이미지를 대척에 두고 분석하고자 한다. 그리하여 최근 일고 있는 사진의 죽음, 사진의 종말에 관한 담론들이 심각한 오류가 있음을 지적하고자 한다. 올드 테크놀로지로서 사진이 당면한 위기, 즉 현재 사진이 안고 있는 존재론적 위기(컴퓨터화 된 디지털 이미지 출현) 그리고 인식론적 위기(윤리, 지식, 가치관 등 급격한 문화 변동)는 매체미학의 본질상 당연한 위기임을 정당화하고자 한다. 본 논문은 이 같은 주장을 위하여 역사적으로 사진술이 어떤 생성과 소멸의 과정을 거쳤으며, 또 어떻게 지금의 디지털 이미지에 이르게 되었는지 테크놀로지 미학 안에서 자동생성주의로서 색인 이미지, 디지털 코드로서 수치 이미지의 생성, 기원, 본질 그리고 정체성을 규명하고자 한다. 특히 본 논고는 논지의 정당성을 위해 다양한 매체미학자들의 주의주장 및 이론적 쟁점을 분석하고자 한다. 또 분석틀을 통해서 테크놀로지 미학의 근간인 기계, 기술성을 바탕으로 한 사진의 생성적 측면과 문화 안에서 변형된 프로그램에 의해 창조되는 디지털 이미지의 변형적 측면의 본질을 파악하고자 한다. 이렇게 사진과 디지털 이미지의 양자의 비교를 통해서 테크놀로지 미학 안에서 올드 미디어(사진)와 뉴 미디어(디지털 이미지)의 자리바꿈은 정당한 것이라는 사실과, 이런 역설적인 구조야말로 기계, 기술을 바탕으로 삼는 테크놀로지 매체의 숙명성이라는 사실을 강조함으로써 논문의 정당성을 강화하고자 한다. 마지막으로 본 논고는 하나의 얼굴, 하나의 정체성으로 자리할 수 없다는 사실을 역사로서 확증하고, 또 사진에서 부동의 존재론과 인식론의 모습은 애초부터 불가능하다는 사실을 지적함으로써 오늘날 제기되고 있는 '사진의 죽음,' '사진의 종말'은 쟁점의 정당성에도 불구하고 매체미학의 역사를 간과하는 오도된 비평이라는 사실을 결론으로 도출하고자 한다.
박지성 선수의 2005년 맨체스터 유나이티드 FC 입단 이후로, 국내에서 프로축구 유니폼 시장이 본격적으로 성장하기 시작했다. 이후, 국내 선수들의 해외 리그에서 활약이 계속되면서 국내에서도 잉글랜드 프리미어리그에 대한 대중의 관심이 지속되고 있다. 이러한 시점에서 본 연구는 국내 프로축구 팬들의 유니폼 소비에 전반적인 소비자 인식을 알아보고, 선수의 영입에 따른 소비자 인식 변화를 비교하고자 했다. EPL의 토트넘에서 활동하고 있는 손흥민 선수의 영입 전후를 중심으로 소셜 미디어에 나타난 프로축구 팬들의 소비자 인식과 구매 요인을 알아보았다. 'EPL 유니폼'을 키워드로, 국내 포털사이트와 소셜 미디어의 게시글을 수집하고, 텍스트 마이닝, SNA, 회귀분석을 사용하여 분석했다. 연구 결과, 첫째, 선수의 소속 팀, 실적, 포지션과 구단의 실적, 순위, 리그의 우승 여부가 프로축구 유니폼의 구매와 탐색에 있어 주요 요인으로 확인되었다. 가격, 디자인, 사이즈, 로고 등과 같은 항목보다 유니폼의 형태, 마킹, 정품 여부, 스폰서와 더 중요하게 작용하고 있었다. 둘째, 구조적 등위성 분석과 군집분석을 통해 국내 프로축구 팬들 사이에서 유니폼과 관련되어 언급되고 있는 주요 주제를 알아본 결과, EPL에 소속된 구단과 유명 선수들이 가장 핵심적인 주제로 나타났다. 셋째, 프로축구 유니폼에 대한 시기별 주제는 월드컵과 EPL 리그에 대한 관심에서 EPL에서 활동하는 다양한 국내외 선수들에 대한 관심으로, 2015년 이후에는 유니폼 자체에 대한 것으로 주제가 변화했다. 이를 통해, 선수들의 이적에 따라 선수가 소속된 해당 구단의 유니폼이 관심을 받고 있음을 알 수 있었다. 넷째, 남녀 소비자 모두 손흥민에 대한 관심이 증가함에 따라서 토트넘이 소속된 리그인 EPL에 대한 관심도 증가하는 것으로 나타났다. 여성의 경우 손흥민에 대한 관심이 증가함에 따라 축구 유니폼에 대해서도 관심을 가지는 것으로 나타난 반면, 남성의 경우 손흥민 선수에 대한 관심과 축구 유니폼에 대한 관심 사이의 관계가 유의하게 나타나지 않았다. 각 구단은 선수와 구단의 성적과 이미지 관리, 스폰서 브랜드 관리에 집중하고, 선수의 이적이 결정되면 선수의 자국에 해당 물량의 공급을 늘리며, 인기를 끌고 있는 선수의 등번호가 부착된 유니폼의 경우에는 여성을 위한 다양한 사이즈를 제공해야 할 필요가 있다.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
국가신성장동력으로MICE(Meeting, Incentive travel, Convention, Exhibition) 산업이각광받으면서국내전시산업에 대한 관심이 드높아 지고 있다. 이에 따라 국내 전시산업(domestic exhibition industry)도 미국이나 유럽과 같이 전시성과를 향상시키기 위한 다양한 연구가 진행 중이다. 그 중에서도 전시환경이나 전시기법 등에 따라 관람효과가 다르기 때문에 지능형 정보기술을 이용하여 전시장에 방문한 참관객의 참관패턴을 분석하여 참관객을 이해하고 더 나아가 참여업체 간의 연관관계 도출 및 전시회의 성과를 높이고자 하는 연구들이 진행되고 있다. 그런데, 이러한 기존의 부스추천시스템과 관련된 연구를 살펴보면 시스템적인 관점에서 추천의 정확성만을 논하고 있을 뿐 추천을 통한 참관객의 행동이나 인식의 변화에 대해서는 충분히 논의하고 있지 못하다. 부스추천시스템(Booth Recommendation System)은 참관객의 부스방문 정보를 바탕으로 참관객에게 적절한 부스를 추천하기 때문에 참관객은 사전에 계획하지 않은 전시장을 방문하게 될 수 있다. 이 때 참관객은 계획하지 않은 방문행동을 통해서 만족할 수도 있지만 추천과 정이 번거롭다거나 자유롭게 참관을 하는데 방해가 된다고 생각할 수 있다. 이 경우 참관객의 자유로운 관람보다 오히려 더 좋지 않은 성과를 낼 수 있다. 따라서 부스 추천시스템을 전시장에 적용하기 위해서는 시스템의 성과에 미치는 영향요인이 무엇인지 전반적으로 검토하고, 부스추천시스템이 참관객의 계획되지 않은 방문행동에 미치는 영향에 대해 면밀히 검토해야 한다. 이에 본 연구에서는 부스추천시스템의 성과에 영향을 미치는 요인이 무엇인지 이론과 기존문헌을 통해 살펴보고자 하였다. 또한, 참관객의 지각된 부스추천시스템의 성과가 참관객의 계획되지 않은 행동에 대한 만족도와 부스추천시스템의 재사용의도에 어떤 영향을 미치는지 살펴보고자 하였다. 이러한 연구목적을 달성하기 위한 이론적 프레임워크로 본 연구는 계획되지 않은 행동이론(Unplanned Behavior Theory)을 도입하였다. 계획되지 않은 행동(unplanned behavior)이란 "소비자들이 사전에 계획하지 되지 않은 채 실행된 어떤 행동"으로 정의할 수 있다. 소비자들의 계획되지 않은 행동은 그 동안 마케팅 등 다양한 분야에서 연구되어 왔다. 특히, 마케팅에서는 계획되지 않은 행동 중 계획되지 않은 구매(unplanned purchasing)에 많은 관심을 두어 왔는데 이 개념은 종종 충동적 구매(impulsive purchasing)와 혼동되어 사용되곤 하였다. 그런데, 충동적 구매가 갑자기 무엇인가 구매를 해야하는 강하고 지속적인 충동(urge)이라고 본다면 계획되지 않은 구매는 구매의사결정의 시점이 상점에 들어가기 전이 아닌 상점 내에서 수행된다는 점이 다르다. 즉, 모든 충동적 구매는 비계획적이나, 모든 계획되지 않은 구매가 충동적인 구매는 아니다. 그런데, 왜 소비자들은 계획되지 않은 행동을 하는가? 이에 대해서는 학자들에 따라 여러 가지 의견이 있으나 소비자가 사전에 철저한 계획을 수립하지 않고 따라서 중간에 계획을 변화시킬만한 유연성(flexibility)이 있기 때문이라는 점에 일관된 의견을 보인다. 즉, 계획되지 않은 행동을 하는데 많은 비용이 소요된다면 소비자들은 사전에 수립한 계획을 변경하기 어렵게 될 것이기 때문이다. 본 연구에서 살펴보고자 하는 전시장 역시 참관객들은 방문하기 전에 전시장이 어떤 프로그램으로 구성되어 있는지 살펴보고, 어떤 부스를 방문할지를 사전에 계획하게 된다. 그 이유는 참관객들이 전시장 방문에 투입할 수 있는 시간은 한정되어 있는 반면에 전시회는 대규모의 다양한 부스로 운영되기 때문에 참관객들이 모든 부스를 참관한다는 것이 현실적으로 불가능하기 때문이다. 따라서 본 연구에서 제시하는 부스추천시스템이 참관객이 선호할 만한 부스를 추천하게 되면 참관객은 자신의 계획을 변화시켜서 부스추천시스템이 추천한 부스를 방문하게 된다. 이러한 방문행동은 소비자가 상점을 방문하거나, 관광객이 관광지에서 계획하지 않은 행동을 하는 것과 유사한 측면에서 이해가 가능하며 특히 최근 여행소비자들이 정보기기의 영향으로 계획되지 않은 행동을 하는 경우가 부쩍 증가한 추세와 동일한 맥락에서 이해가 가능하다. 이에 다음과 같은 연구모형을 설정하였다. 이 연구모형은 참관객이 지각한 부스추천시스템의 성과(performance)를 매개변수로 하고 있는데 이 성과에 영향을 미치는 요인으로 부스추천시스템에 대한 신뢰(trust), 전시장 참관객의 지식수준 (knowledge level), 부스 추천시스템의 기대된 개인화 (expected personalization) 그리고 부스추천시스템의 자유위협(threat to freedom)을 영향요인으로 파악하였다. 또한, 지각된 부스추천시스템 성과와 계획되지 않은 행동에 대한 참관객의 만족도와 향후 부스추천시스템의 재사용의도간의 인과관계도 파악하고자 하였다. 이 때 부스추천시스템에대한신뢰는권한(competence), 자선(benevolence), 그리고진실(integrity)의2차요인(2nd order factor)으로구성하고, 나머지 요인들은 1차 요인으로 구성하였다. 이를 검증하기 위해 2011 DMC Culture Open 행사에서 부스추천시스템을 테스트하기 위하여 시스템을 개발하고, 101명의 참관객을 대상으로 실증조사를 하여 분석하였다. 분석결과 첫째, 부스추천시스템에 있어서 참관객의 신뢰가 가장 중요한 요소이며 실제 해당 부스추천시스템을 이용한 참관객들은 신뢰를 통해 부스추천시스템이 성과 있다고 인식하였다. 둘째, 참관객의 지식수준 역시 부스추천시스템의 성과에 유의한 영향을 미쳤는데 이는 추천의 성과가 전시장에 대한 사전적 이해가 필요함을 의미한다. 즉, 전시장에 대한 이해가 높은 참관객이 부스추천시스템의 유용성을 더 잘 파악하는 것으로 나타났다. 셋째, 기대된 개인화 수준은 성과에 유의한 영향을 미치지 못했는데 이는 기존 연구와 다른 결과로 본 연구에 사용된 부스추천시스템이 충분히 개인화 서비스를 제공하지 못했기 때문이라고 판단된다. 넷째, 부스추천시스템의 추천정보는 개인의 자유를 위협하거나 제한한다고 느끼지 않음으로 충분히 유용한 가치를 갖는다고 할 수 있다. 끝으로 부스정보시스템의 높은 성과는 참관객들의 계획되지 않은 행동에 대한 높은 만족도와 향후에도 부스추천시스템을 재사용할 의도를 만드는 것으로 나타났다. 이와 같이 본 연구는 부스추천시스템이 야기하는 참관객의 계획되지 않은 부스방문행동에 미치는 영향력을 분석하기 위해 계획되지 않은 행동이론을 중심으로 실증자료를 이용하여 분석하고, 이를 통해 향후 부스추천시스템의 구축 및 설계에 유용한 시사점을 도출할 수 있었다. 향후에는 보다 정교한 설문구성과 측정대상을 이용하여 추가적인 검토가 필요할 것으로 기대된다.