• 제목/요약/키워드: accuracy design

검색결과 4,580건 처리시간 0.037초

Electrical Engineering Design Method Based on Neural Network and Application of Automatic Control System

  • Zhe, Zhang;Yongchang, Zhang
    • Journal of Information Processing Systems
    • /
    • 제18권6호
    • /
    • pp.755-762
    • /
    • 2022
  • The existing electrical engineering design method and the dynamic objective function in the application process of automatic control system fail to meet the unbounded condition, which affects the control tracking accuracy. In order to improve the tracking control accuracy, this paper studies the electrical engineering design method based on neural network and the application of automatic control system. This paper analyzes the structure and working mechanism of electrical engineering automation control system by an automation control model with main control objectives. Following the analysis, an optimal solution of controllability design and fault-tolerant control is figured out. The automatic control power coefficient is distributed based on an ideal control effect of system. According to the distribution results, an automatic control algorithm is based on neural network for accurate control. The experimental results show that the electrical automation control method based on neural network can significantly reduce the control following error to 3.62%, improve the accuracy of the electrical automation tracking control, thus meeting the actual production needs of electrical engineering automation control system.

드론사진측량을 위한 프로젝드 설계방안 (Project Design Plan for Drone Photogrammetry)

  • 한승희
    • 대한토목학회논문집
    • /
    • 제39권1호
    • /
    • pp.239-246
    • /
    • 2019
  • 드론사진측량(Drone photogrammetry)은 높은 정확도의 공간정보획득과 각종 모니터링 목적으로 활발히 활용되고 있다. 요구하는 정확도를 얻기 위한 드론사진측량 계획 시 경험 또는 기존의 사례를 참고하여 계획하는 경우가 일반적이나 불량한 정확도로 인하여 재 촬영하는 경우가 종종 발생한다. 요구하는 드론사진측량 처리결과의 공간정확도는 결과물의 종류에 관계없이 객관적인 평가의 수단이 되므로 신중히 결정할 필요가 있다. 따라서 드론사진측량의 프로젝트설계는 요구하는 공간정확도(3D positional accuracy)를 충족시키기 위해 촬영고도, 중복도, 지상기준점(GCP; Ground Control Point)의 수와 배치, 외부표정(EO; Exterior Orientation)요소에 대한 획득방법의 결정이 필요하다. 본 연구에서는 드론사진측량 정확도분석에 대한 기존 연구사례를 면밀히 분석하고 시험지역에 적용하여 검증하였으며 이 분석결과를 토대로 소규모지역 드론사진측량 프로젝트시의 설계지침을 마련하였다. 제시한 프로젝트설계지침은 완벽하지는 않지만 실무에 많은 도움이 될 수 있을 것을 기대하며 추후 종합적분석을 통한 설계지침이 마련된다면 완벽한 매뉴얼을 제공할 수 있을 것이다.

고 정확도 추력 계측 시험대 설계기법 (Design Method of the High Accuracy Thrust Stand)

  • 이규준;박익수;최용규
    • 한국추진공학회지
    • /
    • 제10권1호
    • /
    • pp.9-17
    • /
    • 2006
  • 우주항공 산업과 유도무기의 발달로 여러 종류의 다양한 고성능 추진기관의 개발이 요구됨에 따라서 보다 정확한 추력계측이 요구된다. 이와 같은 요구조건을 충족하기위하여 지금까지 국방과학연구소에서 개발하여 적용하고 있는 시험대의 설계 기법을 제시하고 시험대의 설계에 필요한 기본적이며 전문적인 지식, 개념을 정리한 것이다. 본 논문에서 정확도를 해치는 여러 가지 원인 분석과 제거기법을 제시하였으며 본 설계기법을 적용한 실례를 통하여 본 설계기법의 우수성을 확인하였다.

병렬로봇의 설계 공차가 궤적 정밀도에 미치는 영향 분석 (The Analysis of Trajectory Tracking Error Caused by the Tolerance of the Design Parameters of a Parallel Kinematic Manipulator)

  • 박찬훈;박동일;김두형
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.248-255
    • /
    • 2016
  • Machining error makes the uncertainty of dimensional accuracy of the kinematic structure of a parallel robot system, which makes the uncertainty of kinematic accuracy of the end-effector of the parallel robot system. In this paper, the tendency of trajectory tracking error caused by the tolerance of design parameters of the parallel robot is analyzed. For this purpose, all the position errors are analyzed as the manipulator is moved on the target trajectory. X, Y, Z components of the trajectory errors are analyzed respectively, as well as resultant errors, which give the designer of the manipulator the intuitive and deep understanding on the effects of each design parameter to the trajectory tracking errors caused by the uncertainty of dimensional accuracy. The research results shows which design parameters are critically sensitive to the trajectory tracking error and the tendency of the trajectory tracking error caused by them.

용접 정밀도 향상을 위한 레이저 용접기의 구조개선 (Design of a Laser Welding Machine for the Precision Improvement)

  • 노승훈;정평수;안재우;강희태;이태훈
    • 한국산업융합학회 논문집
    • /
    • 제13권4호
    • /
    • pp.197-203
    • /
    • 2010
  • Laser welding is widely used for precision welding because of superior mechanical properties and high productivity. Generally the accuracy of the welding is determined by the distribution of the bead which is affected by the structural vibrations of the equipment. This study was originated to stabilize a laser welding machine to minimize the bead distribution for the precise joining. The structural properties of the laser welding machine have been investigated to analyze the major factors of the vibrations to cause the bead distribution. The ideas for the design improvement have been applied to the simulation model to identify the effects and further to achieve the stability design and to minimize the bead distribution. The result shows that a few simple design alterations can substantially suppress the structural vibrations and improve the welding accuracy. The procedure used for this study can also be applied to similar welding equipments for improving the structural stability and the welding accuracy.

  • PDF

판재 점진 성형 공정의 정밀도 향상을 위한 다이 구조 개선에 대한 연구 (A study on the die structure for the improvement of the geometric accuracy in the single point sheet incremental forming process)

  • 이원준;김민석;선민호;유제형;이창환
    • Design & Manufacturing
    • /
    • 제16권2호
    • /
    • pp.53-59
    • /
    • 2022
  • Unlike other press forming processes, ISF (Incremental sheet forming) doesn't require a punch and die set. However, during the ISF processes unwanted bending deformation occurred around the target geometry. This paper is aimed to analyze the effect of the die structure, which is supported by bolts, on the geometric accuracy of the ISF processes. In this research, the ISF processes with Al5052 sheet of 0.5 mm, the tool diameter of 6 mm and the stepdown of 0.4 mm was employed. L-shaped, step-shaped, relief-shaped geometry were employed in experiments. Sectional view and the plastic strain were compared. From this research we find out that the bolt supported ISF processes increases the geometric accuracy of products very effectively.

Direct displacement-based design accuracy prediction for single-column RC bridge bents

  • Tecchio, Giovanni;Dona, Marco;Modena, Claudio
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.455-480
    • /
    • 2015
  • In the last decade, displacement-based (DB) methods have become established design procedures for reinforced concrete (RC) structures. They use strain and displacement measures as seismic performance control parameters. As for other simplified seismic design methods, it is of great interest to prove if they are usually conservative in respect to more refined, nonlinear, time history analyses, and can estimate design parameters with acceptable accuracy. In this paper, the current Direct Displacement-Based Design (DDBD) procedure is evaluated for designing simple single degree of freedom (SDOF) systems with specific reference to simply supported RC bridge piers. Using different formulations proposed in literature for the equivalent viscous damping and spectrum reduction factor, a parametric study is carried out on a comprehensive set of SDOF systems, and an average error chart of the method is derived allowing prediction of the expected error for an ample range of design cases. Following the chart, it can be observed that, for the design of actual RC bridge piers, underestimation errors of the DDBD method are very low, while the overestimation range of the simplified displacement-based procedure is strongly dependent on design ductility.

외부가압 공기 베어링 지지 스핀들 시스템에서 직각도 오차가 운전 정밀도에 미치는 영향 (An Effect on the Running Accuracy of the Perpendicularity Error in the Spindle System Supported with Externally-Pressurized Air Bearing)

  • 고정석;김경웅
    • Tribology and Lubricants
    • /
    • 제15권3호
    • /
    • pp.257-264
    • /
    • 1999
  • Recently as electronics and semi-conductor industry develop, ultra-precision machine tools that use air-spindle with externally pressurized air bearing appear in need of ultra-precision products which demand high precision property. Effects of air compressibility absorbs the vibration of shaft, this is called averaging effect, however, the higher running accuracy is demanded by degrees, the more important factor is machining errors that affect running accuracy of shaft. Actually, it would be very important in the view points of running accuracy to understand effects of machining errors on the running accuracy of the spindle system quantitatively to design and manufacture precision spindle system in the aspect that efficiency in manufacturing spindle system and performance in operation. So fu, there are some researches on the effects that machining error affect running accuracy. However, because these researches deal with one bearing of spindle system, these results aren't enough to explain how much machining errors affect running accuracy in the typical spindle system overall. In this study, we investigate the effects of the perpendicularity error of bearing and shaft on running accuracy of spindle system that consists of journal and thrust bearing theoretically, and suggest design guideline about shape tolerances.

고정밀 CMOS sample-and-hold 증폭기 설계 기법 및 성능 비교 (The design of high-accuracy CMOS sampel-and-hold amplifiers)

  • 최희철;장동영;이성훈;이승훈
    • 전자공학회논문지A
    • /
    • 제33A권6호
    • /
    • pp.239-247
    • /
    • 1996
  • The accuracy of sample-and-hold amplifiers (SHA's) empolying a CMOS process in limited by nonideal factors such as linearity errors of an op amp and feedthrough errors of switches. In this work, after some linearity improvement techniques for an op amp are discussed, three different SHA's for video signal processing are designed, simulated, and compared. The CMOS SHA design techniques with a 12-bit level accuracy are proposed by minimizing cirucit errors based on the simulated results.

  • PDF

연속법에 의한 판구조 고유진동수의 민감도 해석 (Eigenvalue design sensivity analysis of structure using continuum method)

  • 이재환;장강석;신민용
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.3-9
    • /
    • 1997
  • In this paper, design sensivity of plate natural frequency is computed for thickness design variables. Once the variational equation is derived from Lagrange quation using the virtual displacement, governing energy bilinear form is obtained and sensivity equation is formulated through the first variation. Natural frequency is obtained using the commercial FEM code and the accuracy of sensivity is verified by finite difference. The accuracy of natural frequency and sensivity improves for the fine mesh model.

  • PDF