• Title/Summary/Keyword: accuracy analysis

Search Result 11,955, Processing Time 0.048 seconds

Selection of Input Nodes in Artificial Neural Network for Bankruptcy Prediction by Link Weight Analysis Approach (연결강도분석접근법에 의한 부도예측용 인공신경망 모형의 입력노드 선정에 관한 연구)

  • 이응규;손동우
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.19-33
    • /
    • 2001
  • Link weight analysis approach is suggested as a heuristic for selection of input nodes in artificial neural network for bankruptcy prediction. That is to analyze each input node\\\\`s link weight-absolute value of link weight between an input node and a hidden node in a well-trained neural network model. Prediction accuracy of three methods in this approach, -weak-linked-neurons elimination method, strong-linked-neurons selection method and integrated link weight model-is compared with that of decision tree and multivariate discrimination analysis. In result, the methods suggested in this study show higher accuracy than decision tree and multivariate discrimination analysis. Especially an integrated model has much higher accuracy than any individual models.

  • PDF

The Digital Image Acquisition of High-resolution by Enhancing the Multiple Images (다중영상 강화에 의한 고해상도 수치영상획득)

  • 강준묵;오원진;엄대용
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.167-176
    • /
    • 1999
  • The study about quantitative or qualitative analysis of object using digital image is being progressed actively with the development of the image medium and image process technique. But, it is very high that the dependency about image acquisition system of high resolution for image analysis of high accuracy and it is a equipment of high-price. In this study, I extracted the optimum condition of image enhancement by analyzing and enhancing the multiple images which were acquired by system of low-price. And I carried out the analysis of 3D accuracy by being applied the optimum condition of image enhancement. In the result of analysis of average 3D positioning error using law image and enhanced image which is acquired by applying the optimum condition of image enhancement, I could obtain the progressed accuracy about 10% on the enhanced image.

  • PDF

Error propagation in 2-D self-calibration algorithm (2차원 자가 보정 알고리즘에서의 불확도 전파)

  • 유승봉;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.434-437
    • /
    • 2003
  • Evaluation or the patterning accuracy of e-beam lithography machines requires a high precision inspection system that is capable of measuring the true xy-locations of fiducial marks generated by the e-beam machine under test. Fiducial marks are fabricated on a single photo mask over the entire working area in the form of equally spaced two-dimensional grids. In performing the evaluation, the principles of self-calibration enable to determine the deviations of fiducial marks from their nominal xy-locations precisely, not being affected by the motion errors of the inspection system itself. It is. however, the fact that only repeatable motion errors can be eliminated, while random motion errors encountered in probing the locations of fiducial marks are not removed. Even worse, a random error occurring from the measurement of a single mark propagates and affects in determining locations of other marks, which phenomenon in fact limits the ultimate calibration accuracy of e-beam machines. In this paper, we describe an uncertainty analysis that has been made to investigate how random errors affect the final result of self-calibration of e-beam machines when one uses an optical inspection system equipped with high-resolution microscope objectives and a precision xy-stages. The guide of uncertainty analysis recommended by the International Organization for Standardization is faithfully followed along with necessary sensitivity analysis. The uncertainty analysis reveals that among the dominant components of the patterning accuracy of e-beam lithography, the rotationally symmetrical component is most significantly affected by random errors, whose propagation becomes more severe in a cascading manner as the number of fiducial marks increases

  • PDF

The Effects of Service Quality of Internet Shopping Malls on Consumer Satisfaction and Word of Mouth Intention (인터넷 쇼핑몰의 서비스 품질이 소비자 만족과 구전의도에 미치는 영향)

  • Jun, Dae-Geun;Kang, Eun-Mi;Choi, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.10 no.6
    • /
    • pp.890-899
    • /
    • 2008
  • This study aimed to identify the effects of service quality of internet shopping malls on consumer satisfaction and word of mouth intention. The data were obtained from questionnaires completed by 345 people aged between 20 and 39 living in Busan. The SPSS package was used for data analysis whose methods included factor analysis, ANOVA, cluster analysis and regression analysis. The results of this study were as follows: First, the service quality factors were determined to be reliability, diversity, convenience, accuracy & communicability. Differences among the groups divided by service quality factors were found to be meaningful in consumer satisfaction and word of mouth intention. Second, reliability, diversity, convenience & accuracy significantly affected consumer satisfaction, however all the service quality factors significantly effected word of mouth intention. Finally, consumer satisfaction, reliability, diversity, accuracy & communicability had an significant effect on word of mouth intention. It would be helpful for the managers of internet shopping malls that consumers can be satisfied with right fashion products and efficient inter-communication based on trustfulness in the long-term relationship.

Design of the Cross Sectional Shape of Intermediate Die for Shaped Drawing of Spline (스플라인 이형인발을 위한 중간 다이 단면형상 설계)

  • Lee, J.E.;Lee, T.K.;Lee, S.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.627-632
    • /
    • 2008
  • The cross sectional shape of intermediate die is one of important parameters to improve dimensional accuracy of final product in shaped drawing process. Until now, it has been designed by the experience or trial and error of the expert. In this study, the cross sectional shape of intermediate die for spline shape is determined by the electric fields analysis and scale factor method. The result of the electric fields analysis and scale factor method have been compared with that of the expert method. The effects of cross sectional shape on the dimensional accuracy were investigated by using FE-simulation. And then the multi-stage shaped drawing experiments were performed to verify the results of FE-simulation. As a result, the cross sectional shape from the electric fields analysis and scale factor method had the good dimensional accuracy. These two methods can be used for the method to obtain the cross sectional shape of intermediate die in shaped drawing process.

Statistical Analysis on the Sources of Variance in Proficiency Test of Quantitative Analysis of Medicines (의약품 함량분석 정도관리에서의 변이 요인에 대한 통계분석)

  • Cho, Jung-Hwan
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.27-37
    • /
    • 2007
  • Proficiency test is an essential tool far ensuring analytical ability of analytical chemists and analytical institutes. Usually, the standard protocol for proficiency test is focused on acceptability of reported analytical results of participants by calculating z-scores and related diagnostic parameters. The ultimate goal of this process is to reveal the sources of variability of analytical results and to find the way to reduce their influence. In this study, the method of analysis of variance (ANOVA) was applied to the analytical data collected from qualify control departments of pharmaceutical companies in KyungIn province in Korea in the year of 2000. As influencing factors of variability of analytical results, the use of internal standards for liquid and gas chromatograpy, the educational and professional background of participants, geological locations and yearly production sizes of participating companies were evaluated. To evaluate the variability in accuracy of analytical results, absolute differences from sample mean and sample median were used and to evaluate variability in precision of individual participants, the reported standard deviation of each participant was used. As a result, the use of internal standards in gas chromatographic analysis, participants' academic background and the yearly production sizes of pharmaceutical companies showed statistically significant influence to the accuracy and the precision of the reported analytical results used in this study.

Evaluation of Volumetric Texture Features for Computerized Cell Nuclei Grading

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1635-1648
    • /
    • 2008
  • The extraction of important features in cancer cell image analysis is a key process in grading renal cell carcinoma. In this study, we applied three-dimensional (3D) texture feature extraction methods to cell nuclei images and evaluated the validity of them for computerized cell nuclei grading. Individual images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D gray-level co-occurrence matrices (3D GLCM) and 3D run length matrices (3D GLRLM). Finally, to demonstrate the suitability of 3D texture features for grading, we performed a discriminant analysis. In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and 3D morphological features improved the accuracy to 82.19%. As a comparative study, we also performed a stepwise feature selection. Using the 4 optimized features, we could obtain more improved accuracy of 84.32%. Three dimensional texture features have potential for use as fundamental elements in developing a new nuclear grading system with accurate diagnosis and predicting prognosis.

  • PDF

Accuracy Analysis of Parallel Method based on Non-overlapping Domain Decomposition Method (비중첩 영역 분할기법 기반 병렬해석의 정확도 분석)

  • Tak, Moonho;Song, Yooseob;Jeon, Hye-Kwan;Park, Taehyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.301-308
    • /
    • 2013
  • In this paper, an accuracy analysis of parallel method based on non-overlapping domain decomposition method is carried out. In this approach, proposed by Tak et al.(2013), the decomposed subdomains do not overlap each other and the connection between adjacent subdomains is determined via simple connective finite element named interfacial element. This approach has two main advantages. The first is that a direct method such as gauss elimination is available even in a singular problem because the singular stiffness matrix from floating domain can be converted to invertible matrix by assembling the interfacial element. The second is that computational time and storage can be reduced in comparison with the traditional finite element tearing and interconnect(FETI) method. The accuracy of analysis using proposed method, on the other hand, is inclined to decrease at cross points on which more than three subdomains are interconnected. Thus, in this paper, an accuracy analysis for a novel non-overlapping domain decomposition method with a variety of subdomain numbers which are interconnected at cross point is carried out. The cause of accuracy degradation is also analyze and establishment of countermeasure is discussed.