• Title/Summary/Keyword: accumulated ecosystem carbon

Search Result 15, Processing Time 0.019 seconds

Soil CO2 efflux in a warm-temperature and sub-alpine forest in Jeju, South Korea

  • Jeong, Heon-Mo;Jang, Rae-Ha;Kim, Hae-Ran;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.41 no.6
    • /
    • pp.165-172
    • /
    • 2017
  • Background: This study investigated the temporal variation in soil $CO_2$ efflux and its relationship with soil temperature and precipitation in the Quercus glauca and Abies koreana forests in Jeju Island, South Korea, from August 2010 to December 2012. Q. glauca and A. koreana forests are typical vegetation of warm-temperate evergreen forest zone and sub-alpine coniferous forest zone, respectively, in Jeju island. Results: The mean soil $CO_2$ efflux of Q. glauca forest was $0.7g\;CO_2\;m^{-2}\;h^{-1}$ at $14.3^{\circ}C$ and that of A. koreana forest was $0.4g\;CO_2\;m^{-2}\;h^{-1}$ at $6.8^{\circ}C$. The cumulative annual soil $CO_2$ efflux of Q. glauca and A. koreana forests was 54.2 and $34.2t\;CO_2\;ha^{-1}$, respectively. Total accumulated soil carbon efflux in Q. glauca and A. koreana forests was 29.5 and $18.7t\;C\;ha^{-1}$ for 2 years, respectively. The relationship between soil $CO_2$ efflux and soil temperate at 10 cm depth was highly significant in the Q. glauca ($r^2=0.853$) and A. koreana forests ($r^2=0.842$). Soil temperature was the main controlling factor over $CO_2$ efflux during most of the study period. Also, precipitation may affect soil $CO_2$ efflux that appeared to be an important factor controlling the efflux rate. Conclusions: Soil $CO_2$ efflux was affected by soil temperature as the dominant control and moisture as the limiting factor. The difference of soil $CO_2$ efflux between of Q. glauca and A. koreana forests was induced by soil temperature to altitude and regional precipitation.

Physiological and Genetic Mechanisms for Nitrogen-Use Efficiency in Maize

  • Mi, Guohua;Chen, Fanjun;Zhang, Fusuo
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.57-63
    • /
    • 2007
  • Due to the strong influence of nitrogen(N) on plant productivity, a vast amount of N fertilizers is used to maximize crop yield. Over-use of N fertilizers leads to severe pollution of the environment, especially the aquatic ecosystem, as well as reducing farmer's income. Growing of N-efficient cultivars is an important prerequisite for integrated nutrient management strategies in both low- and high-input agriculture. Taking maize as a sample crop, this paper reviews the response of plants to low N stress, the physiological processes which may control N-use efficiency in low-N input conditions, and the genetic and molecular biological aspects of N-use efficiency. Since the harvest index(HI) of modern cultivars is quite high, further improvement of these cultivars to adapt to low N soils should aim to increase their capacity to accumulate N at low N levels. To achieve this goal, establishment and maintenance of a large root system during the growth period may be essential. To reduce the cost of N and carbon for root growth, a strong response of lateral root growth to nitrate-rich patches may be desired. Furthermore, a large proportion of N accumulated in roots at early growth stages should be remobilized for grain growth in the late filling stage to increase N-utilization efficiency. Some QTLs and genes related to maize yield as well as root traits have been identified. However, their significance in improving maize NUE at low N inputs in the field need to be elucidated.

  • PDF

Distribution Characteristics of Polycyclic Aromatic Hydrocarbons in the Sediments of Kwangyang Bay in Korea (광양만 연안 퇴적토 중의 다환방향족탄화수소류의 분포특성)

  • Chung, Hung-Ho;Jeong, Ho-Seung;Choi, Sang-Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.210-216
    • /
    • 2006
  • The concentrations of 16 priority PAHs (US EPA standard) were analyzed in the surface sediments obtained from 23 sampling sites near Kwangyang Bay in Korea. There was a local variability in the total PAHs ranged from 0.01 to 171.39 mg/kg, with a mean value of $8.13{\pm}24.8mg/kg$. The major pollution sources of PAHs near Kwanyang Bay were Taeindo, Sueo stream and Wallae stream, whose concentrations were 114.81, 38.37 mg/kg and 19.05 mg/kg, respectively. It showed that PAHs concentrations were increased with the decrease of particle size and with the increase of organic carbon contents in three fractioned sediments. From the analysis of PAHs source using LMW/HMW, Phe/Ant, and Fla/Pyr, pyrolysis by-products were mostly showed in Kwangyang Bay and some place showed the mixure of pyrolysis by-products, and crude oil by-products. Besides, the toxic effects assessment on benthic ecosystem for three major pollution sources showed that the PAHs concentration of Taindo which was mainly accumulated with carcinogenic PAHs exceeds ERM value and the PAHs of Sueo and Wallae streams are the degree of ERL value.

Early Effect of Environment-friendly Harvesting on the Dynamics of Organic Matter in a Japanese Larch (Larix leptolepis) Forest in Central Korea (중부지역 일본잎갈나무림의 친환경벌채가 산림 내 유기물 변화에 미치는 초기 영향)

  • Wang, Rui Jia;Kim, Dong Yeob
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.473-481
    • /
    • 2022
  • Environment-friendly harvesting is practiced to maintain ecosystem, landscape, and forest protection functions. The present study was conducted at Simgok-ri, Sinbuk-myeon, Pocheon, Gyeonngi-do, where a 41-50-year-old Japanese larch forest was harvested in an environment-friendly manner from 2017 to 2019. The dynamics of organic matter in this forest were investigated at three years after the harvest. Specifically, organic matter content was measured on the forest floor and in overstory biomass, litterfall, and soil up to 30 cm in depth from June 2020 to January 2021. Owing to the harvest, the amount of overstory biomass of the Japanese larch stands decreased from 142.22 to 44.20 t ha-1. On the forest floor, the amount of organic matter was 32.87 t ha-1 in the control plots and 23.34 t ha-1 in the harvest plots. Annual litterfall was 4.43 t ha-1 yr-1 in the control plots and 1.16 t ha-1 yr-1 in the harvest plots. Soil bulk density in the B horizon was 0.97 g cm-3 in the control plots and 1.06 g cm-3 i n the harvest plots. Soil organic matter content was 11.5% in the control plots and 12.8% in the harvest plots. The total amount of soil organic matter did not differ significantly between the control plots (245.21 t ha-1) and harvest plots (263.92 t ha-1), although the amount of soil organic matter tended to be higher in the harvest plots. The total amount of organic matter in the forest was estimated to be 406.48 t ha-1 in the control plots and 338.21 t ha-1 in the harvest plots. In the harvest plots, the ratio of aboveground organic matter decreased to 13.1% and soil organic matter increased to 78.0%, indicating that the distribution of organic matter changed significantly in these plots. Overall, the carbon accumulated in aboveground biomass was substantially reduced by environment-friendly harvesting, whereas the soil carbon level increased, which played a role in mitigating the reduction of system carbon in the forest. These results highlight one possible resolution for forest management in terms of coping with climate change. However, given that only three years of environment-friendly harvesting data were analyzed, further research on the dynamics of organic matter and tree growth is needed.

The Process of Changes and Challenges of Regional Science & Technology Policy in Korea (한국 지역과학기술정책의 변화와 발전 방향)

  • Ho Kim;Dongbok Kim;Yoonsik Chae
    • Journal of Technology Innovation
    • /
    • v.31 no.1
    • /
    • pp.29-63
    • /
    • 2023
  • The purpose of this study is to analyze the process of changes in regional science and technology policies in Korea and to seek future development directions. In Korea, regional science and technology policies have been implemented since the introduction of the local autonomy system. Since then, it has been implemented in earnest with the establishment of a central government-level plan. The regional science and technology policies have been developed to this day by interacting with national science and technology policies and regional development policies. Nevertheless, due to the path dependence and lock-in effect in the accumulated process, the regional science and technology policies are still subordinate to central government policies. Thus, the establishment of an independent ecosystem for local science and technology is still insufficient. Furthermore, the gap between regions is deepening, such as the growing of aging population, population decline due to low birth rates, job losses due to the recession of local key industry, and the concentration of the youth population in the metropolitan area. The transformation path such as digital transformation and carbon neutrality paradigm is expected to further widen regional disparities. In order to address a comprehensive problem, the implementing system of regional science and technology policies need to be newly established. A framework for reinvention of regional science and technology policy needed in the era of grand societal challenges have to be developed.