• Title/Summary/Keyword: accident reduction model

Search Result 97, Processing Time 0.029 seconds

Risk Analysis and Selection of the Main Factors in Fishing Vessel Accidents Through a Risk Matrix (위험도 매트릭스를 이용한 어선의 사고 위험도 분석과 사고 주요 요인 도출에 관한 연구)

  • WON, Yoo-Kyung;KIM, Dong-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.139-150
    • /
    • 2019
  • Though, fishing vessel accidents account for 70 % of all maritime accidents in Korean waters, most research has focused on identifying causes and developing mitigation policies in an attempt to reduce this rate. However, predicting and evaluating accident risk needs to be done before the implementation of such reduction measures. For this reasons, we havve performed a risk analysis to calculate the risk of accidents and propose a risk criteria matrix with 4 quadrants, within one of which forecasted risk is plotted for the relative comparison of risks. For this research, we considered 9 types of fishing vessel accidents as reported by Korea Maritime Safety Tribunal (KMST). Given that no risk evaluation criteria have been established in Korea, we established a two-dimensional frequency-consequence grid consisting of four quadrants into which paired frequency and consequence for each type of accident are presented. With the simple structure of the evaluation model, one can easily verify the effect of frequency and consequence on the resulting risk within each quadrant. Consequently, these risk evaluation results will help a decision maker employ more realistic risk mitigation measures for accident types situated in different quadrants. As an application of the risk evaluation matrix, accident types were further analyzed using accident causes including human error (factor) and appropriate risk reduction options may be established by comparing the relative frequency and consequence of each accident cause.

Analysis of Traffic Safety Effectiveness of Vehicle Seat-belt Wearing Detection System (주행차량 안전벨트 착용 검지시스템 교통안전 효과 분석)

  • Ji won Park;Su bin Park;Sang cheol Kang;Cheol Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.53-73
    • /
    • 2023
  • Although it is mandatory to wear a seat belt that can minimize human injury when traffic accident occurs, the number of traffic accident casualties not wearing seat belts still accounts for a significant proportion.The seat belt wearing detection system for all seats is a system that identifies whether all seat passengers wear a seat belt and encourages their usage, also it can be a useful technical countermeasure. Firstly, this study established the viability of system implementation by assessing the factors influencing the severity of injuries in traffic accidents through the development of an ordered probit model. Analysis results showed that the use of seat belts has statistically significant effects on the severity of traffic accidents, reducing the probability of death or serious injury by 0.054 times in the event of a traffic accident. Secondly, a meta-analysis was conducted based on prior research related to seat belts and injuries in traffic accidents to estimate the expected reduction in accident severity upon the implementation of the system.The analysis of the effect of accident severity reduction revealed that wearing seat belts would lead to a 63.3% decrease in fatal accidents, with the front seats showing a reduction of 75.7% and the rear seats showing a reduction of 58.1% in fatal accidents. Lastly, Using the results of the meta-analysis and traffic accident statistics, the expected decrease in the number of traffic accident casualties with the implementation of the system was derived to analyze the traffic safety effects of the proposed detection system. The analysis demonstrated that with an increase in the adoption rate of the system, the number of casualties in accidents where seat belts were not worn decreased. Specifically, at a system adoption rate of 60%, it is anticipated that the number of fatalities would decrease by more than three times compared to the current scenario. Based on the analysis results, operational strategies for the system were proposed to increase seat belt usage rates and reduce accident severity.

A study on the economic performance measurement model of industrial safety design (산업안전디자인의 경제적 성과측정 모델 연구)

  • Jinho, Ahn
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.176-185
    • /
    • 2023
  • This study is a study to develop a model to measure the economic performance when introducing industrial safety design, which is emerging as a necessity for industrial accident prevention measures due to the increase in the industrial site nursing accident rate and the enforcement of the Serious Accident Punishment Act. To this end, studies on the concept of industrial safety management and industrial safety design and economic performance measurement in the field of industrial safety were conducted in terms of theoretical background. Based on the theoretical background, opinions on drafts of related indicators were collected through user opinion surveys, and focus group interviews and Delphi techniques were conducted with experts, and research was conducted to advance the model. In order to secure objectivity, the causal relationship between the introduction of industrial safety design, cost reduction effect, and sales increase effect was tested through regression analysis. After going through these steps, two models of economic performance measurement of industrial safety design were finally developed: a model based on the first-stage disaster loss cost reduction effect and a second-stage sales increase effect. In order to be applied to actual industrial sites, it should be able to be presented as a standard for the degree of service level agreement of industrial safety design beyond a simple checklist.

Consequence Analysis and Risk Reduction Methods for Propulsion Test Facility (추진시험설비의 사고피해영향분석 및 리스크 감소방안)

  • Shin, Ahn-Tae;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.360-366
    • /
    • 2016
  • The Propulsion Test Facilities for the development of Korea Space Launch Vehicle-II are being built, some test facilities are completed and various combustion tests are running. The Propulsion Test Facilities consists test-stand, which carries out tests for engine development model, and various sub-systems and vessels containing LOX and Jet A-1 as propellant. There are always risks of fire and explosion at the test-stand since engine development model is conducted at test-stand with real combustion test with very high pressure, mixed propellant and high energy. In this paper, in order to establish the consequence analysis and risk reduction measures in the Propulsion Test Facilities, followings are considered. 1) a propellant leak accident scenario is assumed in test-stand. 2) TNT equivalent model equation based on blast wave of the explosion was used to analyze blast overpressure and impacts. Also, technical, systematic and managemental measure is described to ensure risk reduction for propulsion test facility.

A Hierarchical Approach for Diagnose of Safety Performance and Factor Identification for Black Spots (Black on Suwon-city) (사고다발지점의 안전성능진단 및 위치별 사고요인분석(수원시를 중심으로))

  • Kim, Suk-Hui;Jang, Jeong-A;Choe, Gi-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.9-20
    • /
    • 2005
  • Accident type and/or factor identification is important in accident reduction planning. The aim of this paper is to apply the hierarchical approach with binomial distribution and logistic regression analysis to find out types and factors, respectively. Based on 2001 Suwon city black spot data, a binomial distribution modeling approach has been applied to diagnose the black spots, with the help of safety performance modeling approach has been applied to diagnose the black spots, with the help of safety performance function. Then, the logistic regression analysis has been employed to identify the critical factors. Some accident remedies are also reviewed in the light of the model outcomes. The proposed research framework sheds light on a different accident related research and can also be successfully applied to similar studies and sites.

A Study on the Risk Assessment and Improvement Methods Based on Hydrogen Explosion Accidents of a Power Plant and Water Electrolysis System (발전소 및 수전해 시스템의 수소 폭발 사고 사례 기반 위험성 평가 및 개선 방안 연구)

  • MIN JAE JEON;DAE JIN JANG;MIN CHUL LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.66-74
    • /
    • 2024
  • This study addresses the escalating issue of worldwide hydrogen gas accidents, which has seen a significant increase in occurrences. To comprehensively evaluate the risks associated with hydrogen, a two approach was employed in this study. Firstly, a qualitative risk assessment was conducted using the bow-tie method. Secondly, a quantitative consequence analysis was carried out utilizing the areal locations of hazardous atmospheres (ALOHA) model. The study applied this method to two incidents, the hydrogen explosion accident occurred at the Muskingum River power plant in Ohio, USA, 2007 and the hydrogen storage tank explosion accident occurred at the K Technopark water electrolysis system in Korea, 2019. The results of the risk assessments revealed critical issues such as deterioration of gas pipe, human errors in incident response and the omission of important gas cleaning facility. By analyzing the cause of accidents and assessing risks quantitatively, the effective accident response plans are proposed and the effectiveness is evaluated by comparing the effective distance obtained by ALOHA simulation. Notably, the implementation of these measures led to a significant 54.5% reduction in the risk degree of potential explosions compared to the existing risk levels.

Development of Traffic Accident frequency Prediction Model by Administrative zone - A Case of Seoul (소규모 지역단위 교통사고예측모형 개발 - 서울시 행정동을 대상으로)

  • Hong, Ji Yeon;Lee, Soo Beom;Kim, Jeong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1297-1308
    • /
    • 2015
  • In Korea, the local traffic safety master plan has been established and implemented according to the Traffic Safety Act. Each local government is required to establish a customized traffic safety policy and share roles for improvement of traffic safety and this means that local governments lead and promote effective local traffic safety policies fit for local circumstances in substance. For implementing efficient traffic safety policies, which accord with many-sided characteristics of local governments, the prediction of community-based traffic accidents, which considers local characteristics and the analysis of accident influence factors must be preceded, but there is a shortage of research on this. Most of existing studies on the community-based traffic accident prediction used social and economic variables related to accident exposure environments in countries or cities due to the limit of collected data. For this reason, there was a limit in applying the developed models to the actual reduction of traffic accidents. Thus, this study developed a local traffic accident prediction model, based on smaller regional units, administrative districts, which were not omitted in existing studies and suggested a method to reflect traffic safety facility and policy variables that traffic safety policy makers can control, in addition to social and economic variables related to accident exposure environments, in the model and apply them to the development of local traffic safety policies. The model development result showed that in terms of accident exposure environments, road extension, gross floor area of buildings, the ratio of bus lane installation and the number of crossroads and crosswalks had a positive relation with accidents and the ratio of crosswalk sign installation, the number of speed bumps and the results of clampdown by police force had a negative relation with accidents.

A preliminary study on operation-effectiveness analysis of marine traffic safety facility (해상교통안전시설의 운영효과분석에 관한 기초연구)

  • Gug, Seung-Gi;Kim, Jung-Hoon;Piao, Yong-Nan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.819-824
    • /
    • 2007
  • This paper studied safety benefit of operation-effectiveness analysis on marine traffic safety facilities. In the operation-effectiveness of marine traffic safety facilities the benefits can be divided as safety benefit, transport benefit, and other benefit. Safety benefit was produced as the loss aversion cost of marine traffic caused by the reduction of marine accidents after establishing and operating marine traffic safety facilities. First of all the reduction rate marine accidents was estimated to do it, and the detail model of loss aversion cost was constructed Then each variable in the model was defined and the method of computation presented.

Numerical Analysis of the Chemical Injection Characteristics Using a Low Reynolds Number Turbulence Model

  • Chang, Byong-Hoon;Chang Kyu;Park, Han-Rim
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.110-118
    • /
    • 1999
  • In order to protect the nuclear reactor coolant system from corrosion, lithium is injected into the coolant from the chemical injection tank. The present study investigates the chemical injection characteristics of the injection tank using a low Reynolds number turbulence model. Laminar flow analysis showed very little diffusion of the jet and gave incorrect flow and concentration fields. A disk located near the inlet of the injection tank was effective in mixing the chemical additives in the top portion of the tank, and significant reduction in injection time was obtained.

  • PDF

Selection of Important Variables in the Classification Model for Successful Flight Training (조종사 비행훈련 성패예측모형 구축을 위한 중요변수 선정)

  • Lee, Sang-Heon;Lee, Sun-Doo
    • IE interfaces
    • /
    • v.20 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • The main purpose of this paper is cost reduction in absurd pilot positive expense and human accident prevention which is caused by in the pilot selection process. We use classification models such as logistic regression, decision tree, and neural network based on aptitude test results of 505 ROK Air Force applicants in 2001~2004. First, we determine the reliability and propriety against the aptitude test system which has been improved. Based on this conference flight simulator test item was compared to the new aptitude test item in order to make additional yes or no decision from different models in terms of classification accuracy, ROC and Response Threshold side. Decision tree was selected as the most efficient for each sequential flight training result and the last flight training results predict excellent. Therefore, we propose that the standard of pilot selection be adopted by the decision tree and it presents in the aptitude test item which is new a conference flight simulator test.