• Title/Summary/Keyword: accident analysis model

Search Result 829, Processing Time 0.03 seconds

A Proposition of Accident Causation Model for the Analysis of Human Error Accidents in Railway Operations (철도 분야의 인적 오류 사고 분석을 위한 사고발생 모형의 제안)

  • Kim, Dong-San;Baek, Dong-Hyun;Yoon, Wan-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.241-248
    • /
    • 2010
  • In accident analysis, it is essential to understand the causal pathways of the accident. Although numerous accident models have been developed to help analysts understand how and why an accident occurs, most of them do not include all elements related to the accident in various fields. Thus analysis of human error accidents in railway operations using these existing models may be possible, but inevitably incomplete. For a more thorough analysis of the accidents in railway operations, a more exhaustive model of accident causation is needed. This paper briefly reviews four recent accident causation models, and proposes a new model that overcomes the limitations of the existing models for the analysis of human error accidents in railway operations. In addition, the usefulness and comprehensiveness of the proposed model is briefly tested by explaining 12 railway accident cases with the model. The proposed accident causation model is expected to improve understanding of how and why an accident/incident occurs, and help prevent analysts from missing any important aspect of human error accidents in railway operations

Development of Accident Classification Model and Ontology for Effective Industrial Accident Analysis based on Textmining (효과적인 산업재해 분석을 위한 텍스트마이닝 기반의 사고 분류 모형과 온톨로지 개발)

  • Ahn, Gilseung;Seo, Minji;Hur, Sun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.179-185
    • /
    • 2017
  • Accident analysis is an essential process to make basic data for accident prevention. Most researches depend on survey data and accident statistics to analyze accidents, but these kinds of data are not sufficient for systematic and detailed analysis. We, in this paper, propose an accident classification model that extracts task type, original cause materials, accident type, and the number of deaths from accident reports. The classification model is a support vector machine (SVM) with word occurrence features, and these features are selected based on mutual information. Experiment shows that the proposed model can extract task type, original cause materials, accident type, and the number of deaths with almost 100% accuracy. We also develop an accident ontology to express the information extracted by the classification model. Finally, we illustrate how the proposed classification model and ontology effectively works for the accident analysis. The classification model and ontology are expected to effectively analyze various accidents.

Forecasting and Evaluation of the Accident Rate and Fatal Accident in the Construction Industries (건설업에서 재해율과 업무상 사고 사망의 예측 및 평가)

  • Kang, Young-Sig
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • Many industrial accidents have occurred continuously in the manufacturing industries, construction industries, and service industries of Korea. Fatal accidents have occurred most frequently in the construction industries of Korea. Especially, the trend analysis of the accident rate and fatal accident rate is very important in order to prevent industrial accidents in the construction industries systematically. This paper considers forecasting of the accident rate and fatal accident rate with static and dynamic time series analysis methods in the construction industries. Therefore, this paper describes the optimal accident rate and fatal accident rate by minimization of the sum of square errors (SSE) among regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, proposed analytic function model (PAFM), and kalman filtering model (KFM) with existing accident data in construction industries. In this paper, microsoft foundation class (MFC) soft of Visual Studio 2008 was used to predict the accident rate and fatal accident rate. Zero Accident Program developed in this paper is defined as the predicted accident rate and fatal accident rate, the zero accident target time, and the zero accident time based on the achievement probability calculated rationally and practically. The minimum value for minimizing SSE in the construction industries was found in 0.1666 and 1.4579 in the accident rate and fatal accident rate, respectively. Accordingly, RAM and ARIMA model are ideally applied in the accident rate and fatal accident rate, respectively. Finally, the trend analysis of this paper provides decisive information in order to prevent industrial accidents in construction industries very systematically.

Traffic Accident Density Models Reflecting the Characteristics of the Traffic Analysis Zone in Cheongju (존별 특성을 반영한 교통사고밀도 모형 - 청주시 사례를 중심으로 -)

  • Kim, Kyeong Yong;Beck, Tea Hun;Lim, Jin Kang;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.75-83
    • /
    • 2015
  • PURPOSES : This study deals with the traffic accidents classified by the traffic analysis zone. The purpose is to develop the accident density models by using zonal traffic and socioeconomic data. METHODS : The traffic accident density models are developed through multiple linear regression analysis. In this study, three multiple linear models were developed. The dependent variable was traffic accident density, which is a measure of the relative distribution of traffic accidents. The independent variables were various traffic and socioeconomic variables. CONCLUSIONS : Three traffic accident density models were developed, and all models were statistically significant. Road length, trip production volume, intersections, van ratio, and number of vehicles per person in the transportation-based model were analyzed to be positive to the accident. Residential and commercial area ratio and transportation vulnerability ratio obtained using the socioeconomic-based model were found to affect the accident. The major arterial road ratio, trip production volume, intersection, van ratio, commercial ratio, and number of companies in the integrated model were also found to be related to the accident.

Safety Improvement Analysis of Roundabouts in Jeollabuk-do Province using Accident Prediction Model (사고예측모형을 활용한 회전교차로 안전성 향상에 관한 연구 - 전라북도를 중심으로 -)

  • Kim, Chil Hyun;Kwon, Yong Seok;Kang, Kuy Dong
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.93-102
    • /
    • 2016
  • PURPOSES : There are many recently constructed roundabouts in Jeollabuk-do province. This study analyzed how roundabouts reduce the risk of accidents and improve safety in the province. METHODS : This study analyzed safety improvement at roundabouts by using an accident prediction model that uses an Empirical Bayes method based on negative binomial distribution. RESULTS : The results of our analysis model showed that the total number of accidents decreased from 130 to 51. Roundabouts also decreased casualties; the number of casualties decreased from 7 to 0 and the seriously wounded from 87 to 16. The effectiveness of accident reduction as analyzed by the accident prediction model with the Empirical Bayes method was 60%. CONCLUSIONS : The construction of roundabouts can bring about a reduction in the number of accidents and casualties, and make intersections safer.

An Analysis of Traffic Accident Injury Severity for Elderly Driver on Goyang-Si using Structural Equation Model (구조방정식을 이용한 고령운전자 교통사고 인적 피해 심각도 분석 (고양시를 중심으로))

  • Kim, Soullam;Yun, Duk Geun
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.117-124
    • /
    • 2015
  • PURPOSES : The purpose of this study is to verify traffic accident injury severity factors for elderly drivers and the relative relationship of these factors. METHODS : To verify the complicated relationship among traffic accident injury severity factors, this study employed a structural equation model (SEM). To develop the SEM structure, only the severity of human injuries was considered; moreover, the observed variables were selected through confirmatory factor analysis (CFA). The number of fatalities, serious injuries, moderate injuries, and minor injuries were selected for observed variables of severity. For latent variables, the accident situation, environment, and vehicle and driver factors were respectively defined. Seven observed variables were selected among the latent variables. RESULTS : This study showed that the vehicle and driver factor was the most influential factor for accident severity among the latent factors. For the observed variable, the type of vehicle, type of accident, and status of day or night for each latent variable were the most relative observed variables for the accident severity factor. To verify the validity of the SEM, several model fitting methods, including ${\chi}^2/df$, GFI, AGFI, CFI, and others, were applied, and the model produced meaningful results. CONCLUSIONS : Based on an analysis of results of traffic accident injury severity for elderly drivers, the vehicle and driver factor was the most influential one for injury severity. Therefore, education tailored to elderly drivers is needed to improve driving behavior of elderly driver.

An Application Study of Accident Analysis Method Based on Epidemiological Model to Improve Occupational Safety and Health Management System (사업장 안전보건관리체계 향상을 위한 역학모형 기반의 사고분석기법 활용 방안 연구)

  • Kyunghwan Kim;Kihyo Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.9-15
    • /
    • 2023
  • The Severe Disaster Punishment Act had recently been established in order to promote safety and health (OSH) management system for severe accident prevention. OSH management system is primarily designed based on risk assessments; however, companies in industries have been experiencing difficulties in hazard identification and selecting proper measures for risk assessments and accident prevention. This study intended to introduce an accident analysis method based on epidemiological model in finding hazard and preventive measures. The accident analysis method employed in this study was proposed by the U.S. Department of Energy. To demonstrate the effectiveness of the accident analysis method, this study applied it to two accident cases occurred in construction and manufacturing industries. The application process and results of this study can be utilized in improving OSH management system and preventing severe accidents.

Analysis of Traffic Accident using Association Rule Model

  • Ihm, Sun-Young;Park, Young-Ho
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.111-114
    • /
    • 2018
  • Traffic accident analysis is important to reduce the occurrence of the accidents. In this paper, we analyze the traffic accident with Apriori algorithm to find out an association rule of traffic accident in Korea. We first design the traffic accident analysis model, and then collect the traffic accidents data. We preprocessed the collected data and derived some new variables and attributes for analyzing. Next, we analyze based on statistical method and Apriori algorithm. The result shows that many large-scale accident has occurred by vans in daytime. Medium-scale accident has occurred more in day than nighttime, and by cars more than vans. Small-scale accident has occurred more in night time than day time, however, the numbers were similar. Also, car-human accident is more occurred than car-car accident in small-scale accident.

A study for safety-accident analysis pattern extract model in semiconductor industry (반도체산업에서의 안전사고 분석 패턴 추출 모델 연구)

  • Yoon Yong-Gu;Park Peom
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.2
    • /
    • pp.13-23
    • /
    • 2006
  • The present study has investigated the patterns and the causes of safety -accidents on the accident-data in semiconductor Industries through near miss report the cases in the advanced companies. The ratio of incomplete actions to incomplete state was 4 to 6 as the cases of accidents in semiconductor industries in the respect of Human-ware, Hard- ware, Environment-ware and System-ware. The ratio of Human to machine in the attributes of semiconductor accident was 4 to 1. The study also investigated correlation among the system related to production, accident, losses and time. In semiconductor industry, we found that pattern of safety-accident analysis is organized potential, interaction, complexity, medium. Therefore, this study find out that semiconductor model consists of organization, individual, task, machine, environment and system.

A Study on the Analysis Model for School Safety Accident (학교안전사고 분석모형에 관한 연구)

  • Park, Sang-Keun;Yoon, Yong-Gi
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.12 no.2
    • /
    • pp.19-30
    • /
    • 2013
  • Low birthrate is causing a reduction in the number of students at kindergartens, elementary schools, middle schools and high schools nationwide and yet, school safety accidents are on a constant rise, which was reported to be 237 accidents a day on average in 2011. Such phenomenon is proving how the school safety policy is not doing what it was supposed to do. In order to decrease the school safety accidents, first, causes of the accidents should be analyzed and then, prevention measures should be designed. For that reason, the study looked into the present condition of the school safety accidents and safety accident theories and based on the results, "School Safety Accident Analysis Matrix Model" was proposed. With a matrix method of the accident types (17 of them) and hazard factors (9 of them) applied, the concerned model analyzed a total of 153 accident causes. In consideration of the results from the analysis, the study suggested that the education authority should open a safety organization and design a school safety policy that would systematically deal with safety education, prevention measures practice, accident investigation and analysis, and countermeasures practice as well.