• 제목/요약/키워드: accelerometer sensor

Search Result 535, Processing Time 0.032 seconds

Development of Micro-opto-mechanical Accelerometer using Optical fiber (광섬유를 이용한 미세 광 기계식 가속도 센서의 개발)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.93-99
    • /
    • 2011
  • This paper presents a new type of optical silicon accelerometer using deep reactive ion etching (DRIE) and micro-stereolithography technology. Optical silicon accelerometer is based on a mass suspended by four vertical beams. A vertical shutter at the end of the mass can only moves along the sensing axis in the optical path between two single-mode optical fibers. The shutter modulates intensity of light from a laser diode reaching a photo detector. With the DRIE technique for (100) silicon, it is possible to etch a vertical shutter and beam. This ensures low sensitivity to accelerations that are not along the sensing axis. The microstructure for sensor packaging and optical fiber fixing was fabricated using micro stereolithography technology. Designed sensors are two types and each resonant frequency is about 15 kHz and 5 kHz.

Positional Tracking System Using Smartphone Sensor Information

  • Kim, Jung Yee
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.265-270
    • /
    • 2019
  • The technology to locate an individual has enabled various services, its utilization has increased. There were constraints such as the use of separate expensive equipment or the installation of specific devices on a facility, with most of the location technology studies focusing on the accuracy of location verification. These constraints can result in accuracy within a few tens of centimeters, but they are not technology that can be applied to a user's location in real-time in daily life. Therefore, this paper aims to track the locations of smartphones only using the basic components of smartphones. Based on smartphone sensor data, localization accuracy that can be used for verification of the users' locations is aimed at. Accelerometers, Wifi radio maps, and GPS sensor information are utilized to implement it. In forging the radio map, signal maps were built at each vertex based on the graph data structure This approach reduces traditional map-building efforts at the offline phase. Accelerometer data were made to determine the user's moving status, and the collected sensor data were fused using particle filters. Experiments have shown that the average user's location error is about 3.7 meters, which makes it reasonable for providing location-based services in everyday life.

A Falling Direction Detection Method Using Smartphone Accelerometer and Deep Learning Multiple Layers (스마트폰 가속도 센서와 딥러닝 다중 레이어를 이용한 넘어짐 방향 판단 방법)

  • Song, Teuk-Seob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1165-1171
    • /
    • 2022
  • Human behavior recognition using an accelerometer has been applied to various fields. As smartphones have become used commonly, a method for human behavior recognition using the acceleration sensor built into the smartphone is being studied. In the case of the elderly, falling often leads to serious injuries, and falls are one of the major causes of accidents at construction fields. In this article, we proposed recognition method for human falling direction using built-in acceleration sensor and orientation sensor in the smartphone. In the past, it was a common method to use the magnitude of the acceleration vector to recognize human behavior. These days, deep learning has been actively studied and applied to various areas. In this article, we propose a method for recognizing the direction of human falling by applying the deep learning multilayer technique, which has been widely used recently.

Sensing and Control Virtual Environment Using Zigbee Sensor Technology (지그비 센서를 활용한 가상현실 제어)

  • Joo, Jae-Hong;Lee, Hyeon-Cheol;Hur, Gi Taek;Kim, Eun Seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.243-247
    • /
    • 2007
  • User interface is one of important factors to enhance one's presence in virtual reality systems. Due to the performance improvement of hardware, the virtual reality system is extensively utilized in games, broadcastings, educations, cultural contents, and so on. And, it is enlarged the necessity for researches on mobile interface to control the virtual reality system guaranteeing user's unrestricted movement. In this paper, we present a mobile interface, ZA sensor which is constructed with a Zigbee module and a Accelerometer to control the virtual environment. And, we propose a method of constructing the virtual reality system using the ZA sensor as a input device and practical applications of the system.

  • PDF

Gait-Event Detection using an Accelerometer for the Paralyzed Patients (가속도계를 이용한 마비환자의 보행이벤트 검출)

  • Kong, Se-Jin;Kim, Chul-Seung;Moon, Ki-Wook;Eom, Gwang-Moon;Tack, Gye-Rae;Kim, Kyeong-Seop;Lee, Jeong-Whan;Lee, Young-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.990-992
    • /
    • 2007
  • The purpose of this study is to develop a practical gait-event detection system which is necessary for the FES (functional electrical stimulation) control of locomotion in paralyzed patients. The system is comprised of a sensor board and an event recognition algorithm. We focused on the practicality improvement of the system through 1) using accelerometer to get the angle of shank and dispensing with the foot-switches having limitation in indoor or barefoot usage and 2) using a rule-base instead of threshold to determine the heel-off/heel-strike events corresponding the stimulation on/off timing. The sensor signals are transmitted through RF communication and gait-events was detected using the peaks in shank angle. The system could detect two critical gait-events in all five paralyzed patients. The standard deviation of the gait events time from the peaks were smaller when 1.5Hz cutoff frequency was used in the derivation of the shank angle from the acceleration signals.

Control of Electromagnetic Accelermeter with Digital PWM Technique (서오보형 가속도계의 PMW 제어)

  • Kim, Jung-Han;Oh, Jun-Ho;Che, Woo-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.112-119
    • /
    • 1996
  • Among the various type of accelerometer, the servo rebalancing type accelermoter can be suitable for Inertial Navigation System, because of its high sensitivity and good response in low frequency. In this paper, we proposed a new technology to control inductive tuype accelerometer utilizing digital PWM method. The new developed digital PWM control has special design scheme for transmitting measurement value to outer device in its servo ollp. So it has no quantized error of transforming outputs of sensors to digital domain. The quantized error may make serious problem in INS system, because outputs of sensor are integrated once or twice by digital computer and it happens every sensor reading times. Therefore, in order to get the accurate information such as displacement, it is necessary to measure accurately the input current. In addition, Digital Signal Processing needs digital data transmission, digital PWM method is adaptive for this purpose. We realized a practical circuit for digital PWM control, analyzed the stability of the circuit, and designed the controller etc. In this study, we solved many practical problem for this application, and got out good results.

  • PDF

Real-Time Physical Activity Recognition Using Tri-axis Accelerometer of Smart Phone (스마트 폰의 3축 가속도 센서를 이용한 실시간 물리적 동작 인식 기법)

  • Yang, Hye Kyung;Yong, H.S.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.506-513
    • /
    • 2014
  • In recent years, research on user's activity recognition using a smart phone has attracted a lot of attentions. A smart phone has various sensors, such as camera, GPS, accelerometer, audio, etc. In addition, smart phones are carried by many people throughout the day. Therefore, we can collect log data from smart phone sensors. The log data can be used to analyze user activities. This paper proposes an approach to inferring a user's physical activities based on the tri-axis accelerometer of smart phone. We propose recognition method for four activity which is physical activity; sitting, standing, walking, running. We have to convert accelerometer raw data so that we can extract features to categorize activities. This paper introduces a recognition method that is able to high detection accuracy for physical activity modes. Using the method, we developed an application system to recognize the user's physical activity mode in real-time. As a result, we obtained accuracy of over 80%.

Effect of Sensitivity Variation for Mounting Methods of Accelerometer in Crash Test (충돌시험시 가속도 센서의 접착방법이 감도 변화에 미치는 영향)

  • Jang, Won-Ho;Kim, Ki-Oh;Beom, Hyen-Kyun;Kwon, Sung-Eun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.115-120
    • /
    • 2008
  • There are many typesof accelerometer sensor. There was mainly used high-g accelerometer to obtain data for vehicle in crash test. Accelerometer was mounted on test vehicle with mounting blocks. Test result can be influenced by condition of mounting i.e. bonding material and type of block. These influences can be evaluated to variation of sensitivity in calibration test. In this paper, Calibration test were carried out for 3 types of bonding material i.e. stud, beewax and double side tape. Other factor was taken into consideration by 3-types for mounting block. All test was conducted by sinusoidal signal vibrator up to 4500Hz. In order to investigate influence for sensitivity from different input voltage in the calibrator, the same test was repeated. Test results were compared with standard accelerometer data. Relative sensitivities and phases were showed small difference in sensitivity for bonding materials with one block, but significant one for another block and different input voltage below 1000Hz.

A Study on the Fabrication of the Lateral Accelerometer using SOG(Silicon On Glass) Process (SOG(Silicon On Glass)공정을 이용한 수평형 미소가속도계의 제작에 관한 연구)

  • Choi, Bum-Kyoo;Chang, Tae-Ha;Lee, Chang-Kil;Jung, Kyu-Dong;Kim, Jong-Pal
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.430-435
    • /
    • 2004
  • The resolution of the accelerometer, fabricated with MEMS technology is mainly affected by mechanical and electrical noise. To reduce mechanical noise, we have to increase mass of the structure part and quality factor related with the degree of vacuum packaging. On the other hand, to increase mass of the structure part, the thickness of the structure must be increased and ICP-RIE is used to fabricate the high aspect ratio structure. At this time, footing effect make the sensitivity of the accelerometer decreasing. This paper presents a hybrid SOG(Silicon On Glass) Process to fabricate a lateral silicon accelerometer with differential capacitance sensing scheme which has been designed and simulated. Using hybrid SOG Process, we could make it a real to increase the structural thickness and to prevent the footing effect by deposition of metal layer at the bottom of the structure. Moreover, we bonded glass wafer to structure wafer anodically, so we could realize the vacuum packaging at wafer level. Through this way, we could have an idea of controlling of quality factor.