• Title/Summary/Keyword: acceleration test

Search Result 1,533, Processing Time 0.03 seconds

Combustion Condition Monitoring of the Marine Diesel Engine using Acceleration Signal of Cylinder Head (실린더 헤더의 가속도 신호를 이용한 선박용 디젤엔진의 연소 상태 모니터링)

  • Seo, Jong-Cheol;Kim, Sang-Hwan;Lee, Don-Chool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.607-610
    • /
    • 2009
  • The abnormal combustion in the running engine results to knocking which increases the pressure and temperature in the cylinder, thereby decreasing the generated power by reducing the thermal efficiency. When the temperature and pressure in the cylinder increased rapidly by knocking, abnormal combustion takes place and the engine power is decreased. To investigate the knocking phenomenon, accelerometers are installed in the cylinder head to monitor and diagnose the vibration signal. As method of signal analysis, the time-frequency analysis method was adapted for acquisition of vibration signal and analyzes engine combustion in the short time. In this experiment, after analyzing time data which is stored in the signal recorder in one unit work (4 strokes: 2 revolutions), the signal with frequency and Wavelet methods with extracted one engine combustion data was also analyzed. Then, normal condition with no knocking signal is analyzed at this time. Hereafter, the experiments made a standard for distinguishing normal and abnormal condition to be carried out in acquisition of vibration signal at all cylinders and extracting knocking signal. In addition, analyzing methods can be diverse with Symmetry Dot Patterns (SDP), Time Synchronous Average (TSA), Wigner-Ville Distribution (WVD), Wigner-Ville Spectrum (WVS) and Mean Instantaneous Power (MIP) in the cold test [2]. With signal processing of vibration from engine knocking sensor, the authors adapted a part of engine /rotor vibration analysis and monitoring system for marine vessels to prevent several problems due to engine knocking

  • PDF

Development of a Data-logger Classifying Dangerous Drive Behaviors (위험 운전 유형 분류 및 데이터 로거 개발)

  • Oh, Ju-Taek;Cho, Jun-Hee;Lee, Sang-Yong;Kim, Young-Sam
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.15-28
    • /
    • 2008
  • According to the accident statistics published by the National Police Agency in 2006, it can be recognized that drivers' characteristics and driving behaviors are the most causational factors on the traffic accidents. At present, although many recording tools such as digital speedometer or black box are distributed in the market to meet social requests of decreasing traffic accidents and increasing safe driving behaviors, it is also true that it still lacks in obvious categories for dangerous driving types and then, the efficiency of the categories to be studied has been low. In this study, dangerous driving types are redefined. They are grouped into 7 classifications in the first level, and the seven classifications are regrouped into 16 in more detail. To verify the redefined dangerous driving types, a Data-logger is developed to receive and analyze the data that occur from the driving behaviors of the test vehicle. The developed Data-logger can be used to construct a real time warning system and safe driving management system with dangerous driving patterns based on acceleration, deceleration, Yaw rate, image data, etc.

  • PDF

Analysis on the Variation for Speed Difference and Spacing of Travel Vehicles in Uninterrupted Flow using GPS (GPS를 이용한 연속류 통행차량의 속도차와 차두간격 변화에 대한 해석)

  • Kim, Jae-Seok;Lee, Sang-Kwan;Woo, Yong-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.3
    • /
    • pp.51-60
    • /
    • 2001
  • The travel behavior can be analysed microscopically using GPS because the travel characteristics can be found out by travelling two test cars loaded with GPS equipments. The speed difference and spacing variation between the lead vehicle and the following's in uninterrupted flow are the important variables related to capacity and safety. This study analysed these with data obtained by travelling the 4th Line and 28th Line of the national road. The variation width in speed difference in the run time is below 3.0%. But, related to the speed difference in the situation of acceleration and deceleration the difference after 4second is bigger than that just after the start. The spacing variation is similar to this. The spacing just before deceleration concerning safety was analysed. When the theoretical values by the modeling method and observed values were compared, the observed values were analysed 12.52% shorter than the other in average.

  • PDF

Development of Industrial High-Speed Transfer Parallel Robot (산업용 고속 이송 병렬 로봇 개발)

  • Kim, Byung In;Kyung, Jin Ho;Do, Hyun Min;Jo, Sang Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1043-1050
    • /
    • 2013
  • Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced.

A study on the improvement of vehicle fuel economy by fuel-cut driving (연료차단 주행에 의한 연비 개선 효과에 대한 연구)

  • Ko, Kwang-Ho;Choi, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.498-503
    • /
    • 2012
  • It happens that the fuel is not injected when the driver doesn't push the acceleration pedal of vehicle with engine speed higher than 1,500rpm above the mid range of vehicle speed. This is called "fuel-cut function" and almost every modern vehicle is equipped with this function. This is activated frequently on the downhill area of highway and the quantity of vehicle-exhausted $CO_2$ gas can be zero on this area. With this fuel-cut function on the test highway, $CO_2$ gas from passenger car(2,000cc engine volume) can be reduced up to 4%. The fuel-cut function with CRUISE made in company AVL is simulated to find the most effective driving pattern on the downhill area. By simulating with CRUISE software, it is found that the lower limit of vehicle speed for fuel-cut should be raised to improve the fuel economy on the steeper downhill road. The fuel economy can be most economical when fuel-cut driving and reacceleration are completed on the section of downhill road.

A Study for Aging Factor of Bulletproof Helmet : High Temperature Treatment (방탄헬멧의 노화인자에 관한 연구 : 고온 환경 처리를 중심으로)

  • Park, Ho Yun;Gu, Seung Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.332-339
    • /
    • 2020
  • This study was a prior study to establish the shelf life of bulletproof helmets, considered the aging factor of bulletproof helmets. To estimate the aging factor of bulletproof helmets, we established a hypothesis that the 'temperature' factor would have the greatest impact on the shelf life of the bulletproof helmet, considering the environmental treatment of the American army's bulletproof helmet's materials. To verify the hypothesis, high temperature acceleration environmental treatment of bulletproof helmets was performed, and the Arrhenius formula was applied to calculate the shelf life. The study result confirmed the negative correlation between bulletproof performance and high temperature, and the influence of temperature as an aging factor was not significant by deriving life by using the Arrhenius model. The limitation of this study is that we couldn't obtain enough samples due to the specificity (miliary supplies) of the test subjects. However, given that the life-related research on bulletproof helmets has not been carried out, this research has great implications and could be used as a reference for improving the Korean Army's bulletproof helmet specifications.

Two Stage Kalman Filter based Dynamic Displacement Measurement System for Civil Infrastructures (이단계 칼만필터를 활용한 사회기반 건설구조물의 3자유도 동적변위 계측 시스템)

  • Chung, Junyeon;Choi, Jaemook;Kim, Kiyoung;Sohn, Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.141-145
    • /
    • 2018
  • The paper presents a new dynamic displacement measurement system. The developed displacement measurement system consists of a sensor module, a base module and a computation module. The sensor module, which contains a force-balanced accelerometer and low-price RTK-GNSS, measures the high-precision acceleration with sampling frequency of 100Hz, the low-precision displacement and velocity with sampling frequency of 10Hz. The measured data is transferred to the computation module through LAN cable, and precise displacement is estimated in real-time with 100Hz sampling frequency through a two stage Kalman filter. The field test was conducted at San Francisco-Oaklmand Bay bridge, CA, USA to verify the precision of the developed system, and it showed the RMSE was 1.68mm.

A Shaking Table Test for Equipment Isolation in the NPP (II): FPS (원전기기의 면진을 위한 진동대 실험 II : FPS)

  • Kim, Min-Kyu;ZChoun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.79-89
    • /
    • 2004
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. For this purpose, shaking table tests were performed. The purpose of this study is enhancement of seismic safety of equipment in the Nuclear Power Plant. The isolation system, known as Friction Pendulum System (FPS), combines the concepts of sliding bearings and pendulum motion was selected. Peak ground acceleration, bidirectional motion, effect of vertical motion and frequency contents of selected earthquake motions were considered. As a result, these are founded that the vertical motion of seismic wave affect to the base isolation and the isolation effect decreased in case of near fault earthquake motion.

Corrosion Mechanism of Reinforcing Steel in Ceramic Mortar (세라믹스 몰탈내의 철근 부식 메카니즘)

  • Kim, Young Man;Lee, Kang-Bong;Cho, Won Il;Ko, Jae Sik;Choi, Beom Suk;Lee, Ji Young;Kim, Young Sang
    • Analytical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.364-370
    • /
    • 2001
  • The corrosion behaviors of reinforcing steels were investigated under chloride ion contained in cement mortar including gypsum by the implementation of half cell potential measurement, EPMA analysis, exterior features, weight loss and extraction experiment. The acceleration test equipment accelerated corrosion of mild steel bar in a short period of time. From observing the exterior features and weight loss, we could evaluate the measure of corrosion. Also, from the extraction experiment of ${SO_4}^{2-}$ with $Cl^-$ ions contained in the ceramic mortar, we concluded that ${SO_4}^{2-}$ ion affected more on the corrosion mechanism in comparison to pH.

  • PDF

Experimental study of vibration characteristics of FRP cables based on Long-Gauge strain

  • Xia, Qi;Wu, JiaJia;Zhu, XueWu;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.735-742
    • /
    • 2017
  • Steel cables as the most important components are widely used in the certain types of structures such as cable-supported bridges, but the long-span structures may result in an increase in fatigue under high stress and corrosion of steel cables. The traditional steel cable is becoming a more evident hindrance. Fiber Reinforced Polymer (FRP) cables with lightweight, high-strength are widely used in civil engineering, but there is little research in vibrational characteristics of FRP cables, especially on the damping characteristic. This article studied the two methods to evaluate dynamical damping characteristic of basalt FRP(BFRP) and glass FRP(GFRP) cables. First, the vibration tests of the B/G FRP cables with different diameter and different cable force were executed. Second, the cables forces were calculated using dynamic strain, static strain and dynamic acceleration respectively, which were further compared with the measured force. Third, experimental modal damping of each cables was calculated by the half power point method, and was compared with the calculation by Rayleigh damping theory and energy dissipation damping theory. The results indicate that (1) The experimental damping of FRP cables decreases with the increase of cable force, and the trend of experimental damping changes is roughly similar with the theoretical damping. (2) The distribution of modal damping calculated by Rayleigh damping theory is closer to the experimental results, and the damping performance of GFRP cables is better than BFRP cables.