• 제목/요약/키워드: acceleration storage

검색결과 130건 처리시간 0.032초

고온가속노화시험법과 저장분석시험법을 이용한 추진제 KM10의 기대수명 평가 (Life Expectancy Estimation of the Propellants KM10 using High Temperature Acceleration Aging Tests and Stockpile Analysis Test)

  • 조기홍;김의용
    • Korean Chemical Engineering Research
    • /
    • 제48권6호
    • /
    • pp.695-699
    • /
    • 2010
  • 추진제 KM10은 니트로셀룰로오스를 주원료로 제조된 단기추진제로서 장기저장 시자연분해현상을 일으키는 것으로 알려져 있다. 따라서 본 연구에서는 고온가속노화시험과 저장분석시험을 이용하여 추진제의 저장수명을 추정하였다. 고온가속 노화시험을 이용한 저장수명추정은 Arrhenius 식과 Berthelot 식을 사용하였으며, 저장분석시험을 이용한 저장수명 예측은 1차 회귀직선식을 이용하였다. 본 연구 결과에 따르면 고온가속 노화시험의 Arrhenius 식과 Berthelot식을 이용하여 추정한 추진제 KM10의 저장수명은 43.72년, 16.53년으로 큰 차이를 보였으며, 저장분석시험으로 이용한 저장수명은 42.94년으로 나타났다. 이것을 E. R. Bixon의 연구결과와 비교할 때 Arrhenius 식을 이용하여 추정한 값이 타당한 것으로 판단되었다.

고밀도 광저장 기기용 틸트 액추에이터 동특성 분석 및 평가 (Evaluation and Analysis of Dynamic Characteristics in Tilt Actuator for High Density Optical Storage Devices)

  • 김석중;이용훈;최한국
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.584-595
    • /
    • 2000
  • We design a new actuator for high density optical device in order to control the radial tilting motion. The newly designed actuator makes it possible to control the tilting motion actively, while the coventional actuator compress tilting motion with passive spring. First of all, We present 3-dimensional modeling of actuator and accomplish the modal analysis and magnetic analysis of actuator. Due to these results, a new designed actuator has performance of high sensitivity and high second resonance frequency. Secondly, We present the 3-DOF dynamic modeling of the 4-wire spring type actuator. sensitivity analysis is performed to consider the assembling error, such as the difference of mass center and force center. From these results, the sensitivities of rotation due to the assembly error are revealed and design criteria of rotation is presented. And experimental results of a newly designed actuator are presented and compared with theoretical results. Finally, We propose a dynamic tilt compensation and high acceleration actuator for high density optical storage devices.

  • PDF

지진계측데이타에 근거한 유체저장탱크의 동적응답 평가 (Evaluation of Dynamic Response for Liquid Storage Tank using the Observed Earthquake Data)

  • 허택영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.115-127
    • /
    • 1997
  • A study to evaluate the seismic response of $\frac{1}{2}$-scaled liquid storage tank constructed in Hualien, is performed. And this study is to identify the liquid-structure-soil interaction by observed earthquake data ans analyzed results. After the calculation of soil impedance for the test site by SASSI code, 3-dimensional seismic response analysis is performed by BEM-FEM-Impedance Method with the consideration of liquid-structure-soil interaction when the tank is excited by real earthquake. The observed acceleration and hydrodynamic pressure are compared with the numerical results. This comparisons show good agreement in predominant frequency and maximum hydrodynamic pressure. And the free surface sloshing motion due to earthquake loadings is computed in time domain.

  • PDF

Three-Dimensional Seismic Analysis for Spent Fuel Storage Rack

  • Lee, Gyu-Mahn;Kim, Kang-Soo;Park, Keun-Bae;Park, Jong-Kyun
    • Nuclear Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.91-98
    • /
    • 1998
  • Time history analysis is usually performed to characterize the nonlinear seismic behavior of a spent fuel storage rack(SFSR). In the past, the seismic analyses of the SFSR were performed with two-dimensional planar models, which could not account for torsional response and simultaneous multi-directional seismic input In this study, three-dimensional seismic analysis methodology is developed for the single SFSR using the ANSYS code. The 3D- Model can be used to determine the nonlinear behavior of the rack, i.e., sliding, uplifting, and impact evaluation between the fuel assembly and rack, and rack and the pool wall, This paper also reviews the 3-D modeling of the SFSR and the adequacy of the ANSYS for the seismic analysis. AS a result of the adquacy study, the method of ANSYS transient analysis with acceleration time history is suitable for the seismic analysis of highly nonlinear structure such as an SFSR but it isn't appropriate to use displacement time history of seismic input.

  • PDF

Dynamic response characteristics of an innovative turretless low motion FPSO hull in central GoM ultra-deep waters

  • Zou, Jun
    • Ocean Systems Engineering
    • /
    • 제12권2호
    • /
    • pp.173-223
    • /
    • 2022
  • In oil and gas industry, FPSO concept is the most popular hull form and ship shaped hull form dominants the FPSO market. Only a non-ship-shaped hull in operations with minor market shares is the cylindrical FPSO hull with medium to small storage capability. To add contracting options and competitions to reduce field development costs, an innovative turretless low motion hull, eco-FPSO, with 1MM bbls oil storage capacity and suitable for installing topsides modulars and equipping with regular SCRs, was first introduced in Zou (2020a). Dynamic characteristic responses of the eco-FPSO compared to the traditional SS-FPSO hull and DD-Semi platform are presented and discussed in this paper, suitability and feasibility of the proposed hull have been demonstrated and validated through extensive analyses in 10-yrp, 100-yrp and 1,000-yrp hurricanes in ultra-deepwater central GoM.

NVMe 드라이버 구현 방식에 따른 I/O 응답시간 분석 (Analysis of I/O Response Time Throughout NVMe Driver Implementation Architectures)

  • 강인구;주용수;임성수
    • 대한임베디드공학회논문지
    • /
    • 제12권3호
    • /
    • pp.139-147
    • /
    • 2017
  • In recent years, non-volatile memory express (NVMe), a new host controller interface standard, has been adapted to overcome performance bottlenecks caused by the acceleration of solid state drives (SSD). Recently, performance breakthrough cases over AHCI based SATA SSDs by adapting NVMe based PCI Express (PCIe) SSD to servers and PCs have been reported. Furthermore, replacing legacy eMMC-flash storage with NVMe based storage is also considered for next generation of mobile devices such as smartphones. The Linux kernel includes drivers for NVMe support, and as the kernel version increases, the implementation of the NVMe driver code has changed. However, mobile devices are often equipped with older versions of Android operating systems (OSes), where the newest features of NVMe drivers are not available. Therefore, different features of different NVMe driver implementations are not well evaluated on Android OSes. In this paper, we analyze the response time of the NVMe driver for various Linux kernel version.

통합최적프레임을 사용한 광부상헤드를 탑재한 서스팬션의 최적화 (Design and Optimization of Suspension with Optical Flying Head Using Integrated Optimization Frame)

  • 김지원;박경수;윤상준;최동훈;박영필;이종수;박노철
    • 정보저장시스템학회논문집
    • /
    • 제1권2호
    • /
    • pp.161-168
    • /
    • 2005
  • This paper optimizes the optical flying head(OFH) suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. The problem formulation for the optimization is suggested to improve the dynamic compliance of OFH and to shift the resonant frequencies caused tracking errors to high frequency domain. Furthermore, the minimization of the effective suspension mass that leads to decrease the so-called 'lift-off' as the disk-head separation acceleration divided by the suspension load is taken into consideration. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. The advanced suspension that reduces the effective mass of the suspension and increases the resonant frequencies of sway and $2^{nd}$ torsion over 10kHz is achieved by using the integrated optimization frame.

  • PDF

Shaking table test of liquid storage tank with finite element analysis considering uplift effect

  • Zhou, Junwen;Zhao, Ming
    • Structural Engineering and Mechanics
    • /
    • 제77권3호
    • /
    • pp.369-381
    • /
    • 2021
  • The seismic responses of elevated tanks considering liquid-structure interaction are presented under horizontal earthquake. The scaled model tank is fabricated to study the dynamic responses of anchored tank and newly designed uplift tank with replaced dampers. The natural frequencies for structural mode are obtained by modal analysis. The dynamic responses of tanks are completed by finite element method, which are compared with the results from experiment. The displacement parallel and perpendicular to the excitation direction are both gained as well as structural acceleration. The strain of tank walls and the axial strain of columns are also obtained afterwards. The seismic responses of liquid storage tank can be calculated by the finite element model effectively and the results match well with the one measured by experiment. The aim is to provide a new type of tank system with vertical constraint relaxed which leads to lower stress level. With the liquid volume increasing, the structural fundamental frequency has a great reduction and the one of uplift tank are even smaller. Compared with anchored tank, the displacement of uplift tank is magnified, the strain for tank walls and columns parallel to excitation direction reduces obviously, while the one perpendicular to earthquake direction increases a lot, but the values are still small. The stress level of new tank seems to be more even due to uplift effect. The new type of tank can realize recoverable function by replacing dampers after earthquake.

고충격 가속도센서용 고분자 기반 기계식 저역통과필터의 성능 예측 (Prediction on the Performance of Polymer-Based Mechanical Low-Pass Filters for High-G Accelerometers)

  • 송세환;장준용;이유림;조한성;윤상희
    • 한국군사과학기술학회지
    • /
    • 제26권3호
    • /
    • pp.262-272
    • /
    • 2023
  • A polymer-based mechanical low-pass filter(m-LPF) for high-g accelerometers makes it possible to remove high-frequency transient noises from acceleration signals, thus ensuring repeatable and reliable measurement on high-g acceleration. We establish a prediction model for performance of m-LPF by combining a fundamental vibration model with the fractional derivative standard linear solid(FD SLS) model describing the storage modulus and loss modulus of polymers. Here, the FD SLS model is modified to consider the effect of m-LPF shape factor (i.e., thickness) on storage modulus and loss modulus. The prediction accuracy is verified by comparing the displacement transmissibility(or cut-off frequency) estimated using our model with that measured from 3 kinds of polymers(polysulfide rubber(PSR), silicone rubber(SR), and polydimethylsiloxane(PDMS)). Our findings will contribute a significant growth of m-LPF for high-g accelerometers.

Response of base-isolated liquid storage tanks to near-fault motions

  • Jadhav, M.B.;Jangid, R.S.
    • Structural Engineering and Mechanics
    • /
    • 제23권6호
    • /
    • pp.615-634
    • /
    • 2006
  • Seismic response of the liquid storage tanks isolated by the elastomeric bearings and sliding systems is investigated under near-fault earthquake motions. The fault normal and parallel components of near-fault motion are applied in two horizontal directions of the tank. The continuous liquid mass of the tank is modeled as lumped masses known as sloshing mass, impulsive mass and rigid mass. The corresponding stiffness associated with these lumped masses has been worked out depending upon the properties of the tank wall and liquid mass. It is observed that the resultant response of the isolated tank is mainly governed by fault normal component with minor contribution from the fault parallel component. Further, a parametric study is also carried out to study the effects of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: aspect ratio of tank, the period of isolation and the damping of isolation bearings. There exists an optimum value of isolation damping for which the base shear in the tank attains the minimum value under near-fault motion. The increase of damping beyond the optimum value will reduce the bearing and sloshing displacements but increases the base shear. A comparative performance of five isolation systems for liquid storage tanks is also studied under normal component of near-fault motion and found that the EDF type isolation system may be a better choice for design of isolated tank in near-fault locations. Finally, it is also observed that the satisfactory response can be obtained by analysing the base-isolated tanks under simple cycloidal pulse instead of complete acceleration history.