• Title/Summary/Keyword: acceleration response spectra

Search Result 121, Processing Time 0.134 seconds

Effect of design spectral shape on inelastic response of RC frames subjected to spectrum matched ground motions

  • Ucar, Taner;Merter, Onur
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.293-306
    • /
    • 2019
  • In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to $V_{S30}$ values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.

Prediction Equation of Spectral Acceleration Responses in Low-to-Moderate Seismic Regions using Domestic and Overseas Earthquake Records (국내·외 계기지진 정보를 활용한 중·약진 지역의 스펙트럴 가속도 응답 예측식)

  • Shin, Dong Hyeon;Kim, Hyung Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.77-86
    • /
    • 2018
  • This study develops an empirical prediction equation of spectral acceleration responses of earthquakes which can induce structural damages. Ground motion records representing hazards of low-to-moderate seismic regions were selected and organized with several influential factors affecting the response spectra. The empirical equation and estimator coefficients for acceleration response spectra were then proposed using a robust nonlinear optimization coupled with a regression analysis. For analytical verification of the prediction equation, response spectra used for low-to-moderate seismic regions were estimated and the predicted results were comparatively evaluated with measured response spectra. As a result, the predicted shapes of response spectra can simulate the graphical shapes of measured data with high accuracy and most of predicted results are distributed inside range of correlation of variation (COV) of 30% from perfectly correlated lines.

Impact of target spectra variance of selected ground motions on seismic response of structures

  • Xu, Liuyun;Zhou, Zhiguang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.115-128
    • /
    • 2022
  • One common method to select input ground motions to predict dynamic behavior of structures subjected to seismic excitation requires spectral acceleration (Sa) match target mean response spectrum. However, dispersion of ground motions, which explicitly affects the structural response, is rarely discussed in this method. Generally, selecting ground motions matching target mean and variance has been utilized as an appropriate method to predict reliable seismic response. The goal of this paper is to investigate the impact of target spectra variance of ground motions on structural seismic response. Two sets of ground motions with different target variances (zero variance and minimum variance larger than inherent variance of the target spectrum) are selected as input to two different structures. Structural responses at different heights are compared, in terms of peak, mean and dispersion. Results show that increase of target spectra variance tends to increase peak floor acceleration, peak deformation and dispersions of response of interest remarkably. To short-period structures, dispersion increase ratios of seismic response are close to that of Sa of input ground motions at the first period. To long-period structures, dispersions of floor acceleration and floor response spectra increase more significantly at the bottom, while dispersion increase ratios of IDR and deformation are close to that of Sa of input ground motions at the first period. This study could further provide useful information on selecting appropriate ground motion to predict seismic behavior of different types of structures.

Evaluation of EC8 and TBEC design response spectra applied at a region in Turkey

  • Yusuf Guzel;Fidan Guzel
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.199-208
    • /
    • 2023
  • Seismic performance analysis is one of the fundamental steps in the design of new or retrofitting buildings. In the seismic performance analysis, the adapted spectral acceleration curve for a given site mainly governs the seismic behavior of buildings. Since every soil site (class) has a different impact on the spectral accelerations of input motions, different spectral acceleration curves have to be involved for every soil class that the building is located on top of. Modern seismic design codes (e.g., Eurocode 8, EC8, or Turkish Building Earthquake Code, TBEC) provide design response spectra for all the soil classes to be used in the building design or retrofitting. This research aims to evaluate the EC8 and TBEC based design response spectra using the spectra of real earthquake input motions that occurred (and were recorded at only soil classes A, B and C, no recording is available at soil class D) in a specific area in Turkey. It also conducts response spectrum analyses of 5, 10 and 13 floor reinforced concrete building models under EC8, TBEC and actual spectral response curves. The results indicate that the EC8 and especially TBEC given design response spectra cannot be able to represent the mean actual spectral acceleration curves at soil classes A, B and C. This is particularly observed at periods higher than 0.3 s, 0.42 s and 0.55 s for the TBEC design response spectra, 0.54 s, 0.65 s and 0.84 s for the EC8 design response spectra at soil classes A, B and C, respectively. This is also reflected to the shear forces of three building models, as actual spectral acceleration curves lead to the highest shear forces, followed by the shear forces obtained from EC8 and, then, the TBEC design response spectra.

Noise Criteria for the Calculation of Response Spectra (응답스펙트럼 계산을 위한 잡음기준)

  • 노명현;최강룡;윤철호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.238-246
    • /
    • 2003
  • By using simulated ground motions, which is sum of earthquake signals and noise, we measured the distortion of response spectra due to noise. We found that the distortion is more closely related to the signal-to-noise (S/N) ratio of root-mean-square (RMS) measurement than that of conventional peak measurement. Given a S/M ratio, the distortion of absolute acceleration response spectra is independent on the earthquake magnitude, while that of relative displacement response spectra has a strong dependence on the earthquake magnitude. This means that, when we calculate response spectra from time histories, we can efficiently predict the distortion of acceleration response spectra simply by measuring the RMS SJN ratios, or the distortion of displacement response spectra by combining the RMS S/N ratios and the earthquake magnitudes.

  • PDF

Characteristics of Power Spectrum according to Variation of Passenger Number and Vehicle Speed (둔턱 진행 차량의 승객수와 속도에 따른 파워스펙트럼 특성분석)

  • Lee, Hyuk;Kim, Jong-Do;Yoon, Moon-chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2022
  • Vehicle vibration was introduced in the time and frequency domains using fast Fourier transform (FFT) analysis. In particular, a vibration mode analysis and characteristics of the frequency response function (FRF) in a sport utility vehicle (SUV) passing over a bump barrier at different speeds was performed systematically. The response behavior of the theoretical acceleration was obtained using a numerical method applied to the forced vibration model. The amplitude and frequency of the external force on the vehicle cause various power spectra with individual intrinsic system frequencies. In this regard, several modes of power spectra were acquired from the spectra and are discussed in this paper. The proposed technique can be used for monitoring the acceleration in a vehicle passing over a bump barrier. To acquire acceleration signals, various experimental runs were performed using the SUV. These acceleration signals were then used to acquire the FRF and to conduct mode analysis. The vehicle characteristics according to the vehicle condition were analyzed using FRF. In addition, the vehicle structural system and bump passing frequencies were discriminated based on their power spectra and other FRF spectra.

A Study on Evaluation of Floor Response Spectrum for Seismic Design of Non-Structural Components (비구조요소의 내진 설계를 위한 기존 층응답스펙트럼의 평가)

  • Choi, Kyung Suk;Yi, Waon Ho;Yang, Won-Jik;Kim, Hyung Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.279-291
    • /
    • 2013
  • The seismic damage of non-structural components, such as communication facilities, causes direct economic losses as well as indirect losses which result from social chaos occurring with downtime of communication and financial management network systems. The current Korean seismic code, KBC2009, prescribes the design criteria and requirements of non-structural components based on their elastic response. However, it is difficult for KBC to reflect the dynamic characteristics of structures where non-structural components exist. In this study, both linear and nonlinear time history analyses of structures with various analysis parameters were carried out and floor acceleration spectra obtained from analyses were compared with both ground acceleration spectra used for input records of the analyses and the design floor acceleration spectrum proposed by National Radio Research Agency. Also, this study investigates to find out the influence of structural dynamic characteristics on the floor acceleration spectra. The analysis results show that the acceleration amplification is observed due to the resonance phenomenon and such amplification increases with the increase of building heights and with the decrease of structure's energy dissipation capacities.

Elastic floor response spectra of nonlinear frame structures subjected to forward-directivity pulses of near-fault records

  • Kanee, Ali Reza Taghavee;Kani, Iradj Mahmood Zadeh;Noorzad, Assadollah
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.49-65
    • /
    • 2013
  • This article presents the statistical characteristics of elastic floor acceleration spectra that represent the peak response demand of non-structural components attached to a nonlinear supporting frame. For this purpose, a set of stiff and flexible general moment resisting frames with periods of 0.3-3.6 sec. are analyzed using forty-nine near-field strong ground motion records. Peak accelerations are derived for each single degree of freedom non-structural component, supported by the above mentioned frames, through a direct-integration time-history analysis. These accelerations are obtained by Floor Acceleration Response Spectrum (FARS) method. They are statistically analyzed in the next step to achieve a better understanding of their height-wise distributions. The factors that affect FARS values are found in the relevant state of the art. Here, they are summarized to evaluate the amplification and/or reduction of FARS values especially when the supporting structures undergo inelastic behavior. The properties of FARS values are studied in three regions: long-period, fundamental-period and short-period. Maximum elastic acceleration response of non-structural component, mounted on inelastic frames, depends on the following factors: inelasticity intensity and modal periods of supporting structure; natural period, damping ratio and location of non-structural component. The FARS values, corresponded to the modal periods of supporting structure, are strongly reduced beyond elastic domain. However, they could be amplified in the transferring period domain between the mentioned modal periods. In the next step, the amplification and/or reduction of FARS values, caused by inelastic behavior of supporting structure, are calculated. A parameter called the response acceleration reduction factor ($R_{acc}$), has been previously used for far-field earthquakes. The feasibility of extending this parameter for near-field motions is focused here, suggested repeatedly in the relevant sources. The nonlinearity of supporting structure is included in ($R_{acc}$) for better estimation of maximum non-structural component absolute acceleration demand, which is ordinarily neglected in the seismic design provisions.

Generation of critical and compatible seismic ground acceleration time histories for high-tech facilities

  • Hong, X.J.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.687-707
    • /
    • 2007
  • High-tech facilities engaged in the production of semiconductors and optical microscopes are extremely expensive, which may require time-domain analysis for seismic resistant design in consideration of the most critical directions of seismic ground motions. This paper presents a framework for generating three-dimensional critical seismic ground acceleration time histories compatible with the response spectra specified in seismic design codes. The most critical directions of seismic ground motions associated with the maximum response of a high-tech facility are first identified. A new numerical method is then proposed to derive the power spectrum density functions of ground accelerations which are compatible with the response spectra specified in seismic design codes in critical directions. The ground acceleration time histories for the high-tech facility along the structural axes are generated by applying the spectral representation method to the power spectrum density function matrix and then multiplied by envelope functions to consider nonstationarity of ground motions. The proposed framework is finally applied to a typical three-story high-tech facility, and the numerical results demonstrate the feasibility of the proposed approach.

Effect of Smooth Hysteretic Behavior for Inelastic Response Spectra (비탄성 응답스펙트럼에 대한 완만한 곡선형 이력거동의 영향)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • The actual hysteretic behavior of structural elements and systems is closer to smooth hysteretic behavior than piece-wise linear behavior. This paper presents a methodology for computing the constant-ductility inelastic response spectra for smooth hysteretic behaviors. The effect of the hysteretic smoothness on the inelastic response spectra for acceleration, displacement, and input energy is evaluated. The results indicate that increasing smoothness in the hysteretic behavior decreases the inelastic response spectra.