• Title/Summary/Keyword: acceleration measurement only

Search Result 75, Processing Time 0.03 seconds

Enhancement of Fall-Detection Rate using Frequency Spectrum Pattern Matching

  • Lee, Suhwan;Oh, Dongik;Nam, Yunyoung
    • Journal of Internet Computing and Services
    • /
    • v.18 no.3
    • /
    • pp.11-17
    • /
    • 2017
  • To the elderly, sudden falls are one of the most frightening accidents. If an accident occurs, a prompt action has to be taken to deal with the situation. Recently, there have been a number of attempts to detect sudden falls using acceleration sensors embedded in the mobile devices, such as smart phones and wrist-bands. However, using the sensor readings only, the detection rate of the falls is around 65%. Ordinary daily activities such as running or jumping could not be well distinguished from the falls. In this paper, we describe our attempts on improving the fall-detection rate. We implemented a wrist-band fall detection module, using a three-axis acceleration sensor. With the pattern matching on the fall signal-strength frequency spectrum, in addition to the conventional signal strength measurement, we could improve the detection rate by 9% point. Furthermore, by applying two wrist-bands in the experiment, we could further improve the detection rate to 82%.

Effects of Covariance Modeling on Estimation Accuracy in an IMU-based Attitude Estimation Kalman Filter (IMU 기반 자세 추정 칼만필터에서 공분산 모델링이 추정 정확도에 미치는 영향)

  • Choi, Ji Seok;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.440-446
    • /
    • 2020
  • A well-known difficulty in attitude estimation based on inertial measurement unit (IMU) signals is the occurrence of external acceleration under dynamic motion conditions, as the acceleration significantly degrades the estimation accuracy. Lee et al. (2012) designed a Kalman filter (KF) that could effectively deal with the acceleration issue. Ahmed and Tahir (2017) modified this method by adjusting the acceleration-related covariance matrix because they considered covariance modeling as a pivotal factor in the estimation accuracy. This study investigates the effects of covariance modeling on estimation accuracy in an IMU-based attitude estimation KF. The method proposed by Ahmed and Tahir can be divided into two: one uses the covariance including only diagonal components and the other uses the covariance including both diagonal and off-diagonal components. This paper compares these three methods with respect to the motion condition and the window size, which is required for the methods by Ahmed and Tahir. Experimental results showed that the method proposed by Lee et al. performed the best among the three methods under relatively slow motion conditions, whereas the modified method using the diagonal covariance with a high window size performed the best under relatively fast motion conditions.

Improvement of Target Motion Analysis for a Passive Sonar System with Measurement Bias Estimation (측정각 Bias 보상을 통한 수동소나체계의 표적기동분석 성능 향상 연구)

  • Yoo, Phil-Hoon;Song, Taek-Lyul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2011-2013
    • /
    • 2001
  • In this paper the MMAE(Multiple Model Adaptive Estimation) algorithm using the MGEKF(Modified Gain Extended Kalman Filter) of which modes are set to be measurement biases is proposed to enhance the performance of target tracking with bearing only measurements. The state are composed of relative position, relative velocity and taregt acceleration. The mode probability is calculated from the bearing only measurements from the HMS(Hull-Mounted Sonar). The proposed algorithm is tested in a series of computer simulation runs.

  • PDF

Object Localization in Sensor Network using the Infrared Light based Sector and Inertial Measurement Unit Information (적외선기반 구역정보와 관성항법장치정보를 이용한 센서 네트워크 환경에서의 물체위치 추정)

  • Lee, Min-Young;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1167-1175
    • /
    • 2010
  • This paper presents the use of the inertial measurement unit information and the infrared sector information for getting the position of an object. Travel distance is usually calculated from the double integration of the accelerometer output with respect to time; however, the accumulated errors due to the drift are inevitable. The orientation change of the accelerometer also causes error because the gravity is added to the measured acceleration. Unless three axis orientations are completely identified, the accelerometer alone does not provide correct acceleration for estimating the travel distance. We propose a way of minimizing the error due to the change of the orientation. In order to reduce the accumulated error, the infrared sector information is fused with the inertial measurement unit information. Infrared sector information has highly deterministic characteristics, different from RFID. By putting several infrared emitters on the ceiling, the floor is divided into many different sectors and each sector is set to have a unique identification. Infrared light based sector information tells the sector the object is in, but the size of the uncertainty is too large if only the sector information is used. This paper presents an algorithm which combines both the inertial measurement unit information and the sector information so that the size of the uncertainty becomes smaller. It also introduces a framework which can be used with other types of the artificial landmarks. The characteristics of the developed infrared light based sector and the proposed algorithm are verified from the experiments.

Collision Detection Algorithm using a 9-axis Sensor in Road Facility (9축센서 기반의 도로시설물 충돌감지 알고리즘)

  • Hong, Ki Hyeon;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.297-310
    • /
    • 2022
  • Road facilities such as CCTV poles have potential risk of collision accidents with a car. A collision detection algorithm installed in the facility allows the collision accident to be known remotely. Most collision detection algorithms are operated by simply focusing on whether a collision have occurred, because these methods are used to measure only acceleration data from a 3-axis sensor to detect collision. However, it is difficult to detect other detailed information such as malfunction of the sensor, collision direction and collision strength, because it is not known without witness the accident. Therefore, we proposed enhanced detection algorithm to get the collision direction, and the collision strength from the tilt of the facility after accident using a 9-axis sensor in this paper. In order to confirm the performance of the algorithm, an accuracy evaluation experiment was conducted according to the data measurement cycle and the invocation cycle to an detection algorithm. As a result, the proposed enhanced algorithm confirmed 100% accuracy for 50 weak collisions and 50 strong collisions at the 9-axis data measurement cycle of 10ms and the invocation cycle of 1,000ms. In conclusion, the algorithm proposed is expected to provide more reliable and detailed information than existing algorithm.

A Study on Ship Motion Measurement System Using ADIS16480 Inertial Measurement Unit (ADIS16480 관성측정장치를 이용한 선체 운동 측정 시스템에 관한 연구)

  • Kim, Daejeong;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.270-270
    • /
    • 2019
  • Although the Inertial Measurement Unit is applied to a variety of applications such as ships, submarines, and aircrafts, it is mainly used in the attitude measurement area. But since such equipment is expensive, it has been used only in special fields. In this study, the ship's seaworthiness is verified by measuring the speed, direction, gravity, and acceleration of the ship in real time using a low-cost Inertial Measurement Unit. A research method for estimating fIuid force coefficients was devised. Therefore, this study measured ship motion factors at sea, processed and analyzed the measured data, and evaluated the overall safety of the ship and estimated the resistance and steering performance of the ship.

  • PDF

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension System: Implementation and Experiment

  • Tae, Hong-Kyung;Chul, Sohn-Hyun;Ryong, Jung-Jae;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.178.4-178
    • /
    • 2001
  • In this paper a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype ...

  • PDF

Self-Tuning Modified Skyhook Control for Semi -Active Suspension Systems (자기동조기법을 이용한 반능동 현가장치의 수정된 스카이훅제어 구현 및 실험)

  • 정재룡;손현철;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.114-114
    • /
    • 2000
  • In this paper a self-tuning modified skyhook control for the semi-active suspension systems is investigated. The damping force generation mechanism is modeled We consider a 2 DOF time-varying quarter car model that permits parameter variations of the sprung mass and suspension spring coefficient. The modified skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters, according to parameter variations. The skyhook gains are designed in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype will be discussed

  • PDF

INFLUENCE OF OPERATION PATTERNS OF LIGHT-DUTY FREIGHT VEHICLES ON NOx POLLUTION AT LOCAL ROADSIDES

  • Saito, A.;Ueki, S.;Takada, Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.269-276
    • /
    • 2006
  • Running tests on roads were conducted to clarify the influences of road infrastructure, traffic condition and vehicle's emission level to the amount of emission at local roadsides, and to reveal the operation patterns which can reduce the emission peaks. NOx emission peaks of two light duty freight diesel vehicles which have different emission levels were evaluated by using an on-board measurement system. Tests were carried out with various payload conditions and road conditions. As a result many NOx emission peaks were observed when the vehicles were starting or accelerating at intersections. The test vehicle which has higher emission level caused higher frequency and level of NOx emission peaks. Shifting up at lower engine speed in combination with lower acceleration brought out not only reduction of NOx emission peaks level but also of $CO_2$ mass emission.

ANALYSIS OF DOPPLERIZED ACCELERATION SIGNALS IN A ROTATING SHAFT BY USING A VOLD-KALMAN ORDER TRACKING FILTER

  • Kook, H.S.;Crane, C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.521-531
    • /
    • 2007
  • Measurement of the vibration transmitted through rotating shafts such as half shafts in vehicles is of interest in applications such as noise transfer analysis and the study of operating deflections. Vibration signals transmitted through a rotating shaft usually include six degree-of-freedom components, thus making the measurement of vibration a challenging task. In the present work, a new measurement method is presented, one that resolves the minimum of only two one-axis accelerometer signals into all components of vibration with reasonable accuracy. The method utilizes the Dopplerized signals obtained from accelerometers attached to a rotating shaft and a Void-Kalman order tracking filter to decompose signals into orders of different vibration components. The new method proposed in the present work is verified by simulated run-up test data and applied to an experimentally obtained data set.