• Title/Summary/Keyword: accelerating

Search Result 1,490, Processing Time 0.027 seconds

Optimal M-level Constant Stress Design with K-stress Variables for Weibull Distribution

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.935-943
    • /
    • 2004
  • Most of the accelerated life tests deal with tests that use only one accelerating variable and no other explanatory variables. Frequently, however, there is a test to use more than one accelerating or other experimental variables, such as, for examples, a test of capacitors at higher than usual conditions of temperature and voltage, a test of circuit boards at higher than usual conditions of temperature, humidity and voltage. A accelerated life test is extended to M-level stress accelerated life test with k-stress variables. The optimal design for Weibull distribution is studied with k-stress variables.

  • PDF

Analysis of Diffuse Brain Injury due to Accelerations (가속도에 의한 뇌의 미만성 부상에 관한 연구)

  • Nam, D.H.;Kim, Y.E.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.213-217
    • /
    • 1997
  • In this study, three-dimensional inite element model was developed and analyzed or DAI using ABAQUS. To verify the developed FE model, simulated results were compared to experimental results of human cadaver by Nahum et. al. (1977). The effect of acceleration pattern and accelerating duration time or DAI was analyzed by means of maximum shear stress and pressure distribution. DAI was favored or angular acceleration rather than linear acceleration, and occured in brain stem, pons and midbrain easily as accelerating duration time was increased.

  • PDF

A Study on Growth Acceleration in Korean by the Maximum Growth Age in Body Height From 1913 to 1990. (한국인 신장의 최대발육연령으로 본 발육촉진현상의 추이연구)

  • 박순영
    • Korean Journal of Health Education and Promotion
    • /
    • v.11 no.1
    • /
    • pp.70-84
    • /
    • 1994
  • On the basis of the study intended to research by cross-sectional study keeped pace with semi-longitudinal study the growth accelerating phenomena that MGA(Maximum Growth Age) in teenager's body height. The duration of study is from Oct. 1st. 1991 to September 30 1992 and the data are analysed through computer. The body height and MGA of Koreans who had been for during the period from 1898 to 1973 proved transition of the growth accelerating phenomena by research data reported between 1913 and 1990. The results are as follows: 1. Maximum Growth Age The MGA's in body height of male are respectively the age 15.024 in 1913, 14.28 in 1940, 13.65 in 1959, 13.86 in 1967, 12.52 in 1983, 11.39 in 1987, 12.36 in 1990, while those of female are the age of 12.0 in 1940, 12.36 in 1959, 10.45 in 1969, 11.15 in 1985, 10.27 in 1988, 10.23 in 1990 ; these data show that the MGA of the Korean has been getting younger. 2. The correlation of the MGA's in body height are as below ; Male ; r = -0.448(p<0.01) Female ; r = -0.404(p<0.05) 3. The equation of linear regression of MGA's in body height are as below ; Male ; Y(MGA) = -0.0316X(the year)+75.297 Female ; Y(MGA) = -0.035X(the year)+79.986 4. The MGA's in body height are shown in Table 3. 5. From the transition of the growth accelerating phenomena, we can compute the fact that the MGA's has been getting younger by 0.3 year per 10 years. 6. The future growth accelerating phenomena in body height, the MGA's of male are respectively the age 12.25 in 1995, 12.09 in 2000, 11.94 in 2005, 11.78 in 2010, while those of female are the age of 10.16 in 1995, 9.98 in 2000, 9.81 in 2005, 9.64 in 2010, these data show that the MGA of female are more younger than that of male.

  • PDF

Effects of Ethrel on Tobacco-Leaf Maturity -Influences by Different Levels of the Chemical, Soil Nitrogen and Time of the Chemical Application- (Ethrel의 농도, 처리시기 및 질소농도별 시비의 잎담배 성숙에 미치는 영향)

  • 정병화
    • Journal of Plant Biology
    • /
    • v.17 no.1
    • /
    • pp.15-21
    • /
    • 1974
  • The most commonly grown economical and flue-cured tobacco cultivar Yellow Special A was used in pot-culture tests in order to study Ethrel (2-chloroethyl phosponic acid) effects on accelerating maturity of tobacco leaves in relation to the most adequate level of the chemical useful for field growing, nitrogen level in soil for the most pronounced response, and the most suitable spray period during the growth stages of pre-, post- and topping periods. The following conclusions, thus, were obtained from the present studies; 1. 500ppm Ethrel spray was reconfirmed to be adequate in the practical applications, although the extent of yellow-ripening of tobacco leaves was increased as the Ethrel level increased. The highest leevel treated resulted in causing chemically damaged lesions on leaves and early defoliation. 2. Ethrel-treated leaves showed deeper yellowish tinge to them than those without treatment, while different levels of the chemcial had less influence on the tinge. 3. An adequate level of nitrogen supply to plants favored the Ethrel response, whereas either very low or high level of nitrogen in the soil lowered the chemical effect on accelerating the yellow-ripening. When carbohydrates versus total nitrogen ratio became relatively high, the condition brought out some outstanding Ethrel effects. 4. Chlorophyll level of leaves increased as soil applications of nitrogen level increased, and that also increased carotenoid level of the tobacco leaves. Ethrel-treated leaves showed deeper orange tinge than those without treatment, while the highest level of nitrogen application showed the deepest orange tinge to tobacco leaves. 5. Pre-topping treatment (12 days before topping and flowering) resulted in almost no Ethrel response, and that treatment right on the day of topping, showed response of yellow-leaf ripening at nearly bottom-half leaves of a tobacco plant. The post-topping treatment (12 days after topping) made plants showing full response of Ethrel from bottom to the top leaves of tobacco plant in accelerating the leaf maturity. 6. The extent of Ethrel responses on accelerating yellow-ripening of tobacco leaves was discussed for the modifying influences brought about by certain environmental factors. Discussions were also made about the possible practical applications (particularly for pre-rice planting) and quality difference that may be caused by such growth environments.

  • PDF

Effects of Flow Acceleration on Drag Force and Wake Field of 2D Circular Cylinder (유입 유동의 가속도가 2D 원형실린더의 항력 및 후류에 미치는 영향)

  • Son, Hyun A;Lee, Sungsu;Cho, Seong Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.507-514
    • /
    • 2019
  • Computational studies of accelerating flow around 2D Circular Cylinder was performed to investigate characteristics of wake field and drag forces. Previous studies had revealed that drag on the cylindrical body in accelerating flow is much greater than that in the flow with constant velocity; however, the underlying physics on the drag increase has not been clearly investigated. In order to investigate the drag increase and its relationship with wake development, this study employed a finite-volume based CFD code, Fluent 13.0 with k-ω SST model for turbulence effects. Inflows are modeled with varied accelerations from 0.4905 to 9.81m/s2. The drag computed in the present study is in good agreement with previous studies, and clearly shows the increase compared to the drag on the body in the flow with constant velocity. The results also show that drag crisis observed at high Reynolds number in the case of the flow with constant velocity is also found in the case of accelerating flow. The analysis for wake and recirculation length shows that conventional vortex shedding does not occur even at high Reynolds number and the drag increase is larger at higher acceleration.

Degradation of Coatings under Atmospheric Tropical Conditions

  • To, Thi Xuan Hang;Pham, Gia Vu;Vu, Ke Oanh;Trinh, Anh Truc;Kodama, Toshiaki;Tanabe, Hiroyuki;Taki, Tohru;Nagai, Masanori
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.207-211
    • /
    • 2003
  • The weather resistance of five coatings systems based on alkyd, chlorinated rubber, epoxy, polyurethane and fluoropolymer were studied by natural exposure test and accelerated test. The coatings were exposed at Hanoi station with urban industry atmosphere and at Baichay station with marine atmosphere. The degradation of coatings was evaluated by gloss measurement and surface analysis by scanning electronic microscopy. The results obtained show that among coatings tested the gloss of polyurethane and fluoropolymer coatings remained highly and those of alkyd, chlorinated rubber and epoxy coatings were very low after two years of atmospheric exposure. Under accelerating conditions the gloss of fluoropolymer coatings remained highly after 80 cycles of testing. By comparison with accelerating test in UV-condensation chamber the conditions at atmospheric stations are more aggressive.

Accelerating Ability Optimization for Dual Mode Hybrid Vehicle Using Complex Planetary Gears (복합 유성기어를 이용한 듀얼모드 하이브리드 자동차의 가속성능 최적화)

  • Yang, Si-U;Kim, Nam-Wook;Yang, Ho-Rim;Park, Yoeng-Il;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.97-100
    • /
    • 2006
  • Accelerating ability is one of the most important performance of the vehicle. Unlike conventional internal combustion vehicles and power-assist hybrid vehicles, the maximized acceleration of dual mode hybrid vehicles is not simply. achieved by maximizing engine or motor torque Because of the dynamic stability of planetary gear, speeds and torques control of engine, motor 1 and motor 2 is essential and according to control value, acceleration performance is changed There are two control values which are velocity and torque for each component totalling six. These six values can be variables for an objective function. However, because three velocity variables can be regarded as only one variable speed ratio and the remaining three torque variables can be solved analytically, without complicated numerical algorithm the solution for the objective function can be obtained. This optimized solution shows the best performance possible to the specified dual mode system.

  • PDF

An Experimental Study on the Improvement of Turbocharger Lag by Means of Air Injection in a Turbocharged Diesel Engine

  • Choi, Nag-Jung;Oh, Seong-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.951-962
    • /
    • 2010
  • An experimental study was performed to investigate the improvement of response performance of a turbocharged diesel engine under the operating conditions of low speed and fast acceleration. In this study, the experiment for improving the low speed and acceleration performance is performed by means of injecting air into the intake manifold of compressor exit during the period of low speed and application of a fast acceleration from low speed. The effects of air injection into the intake manifold on the response performance were investigated at various applicant parameters such as air injection pressure, accelerating rate, accelerating time, engine speed and load. The experimental results show that air injection into the intake manifold at compressor exit is closely related to the improvement of turbocharger lag under low speed and accelerating conditions of a turbocharged diesel engine. During the rapid acceleration period, the air injection into the intake manifold of turbocharged diesel engine indicates the improvement of the combustion characteristics and gas pressure in the cylinder. At low speed range of the engine, the effect of air injection shows the improvement of the pressure distribution of turbocharger and combustion pressure during the period of gas exchange pressure.

Performance Evaluation for Hydraulic Type Energy Regenerative System (유압식 에너지 회생시스템의 성능평가)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.136-144
    • /
    • 2006
  • Vehicles usually have 3 types of speed pattern like acceleration, travel, and deceleration. It requires much driving energy from engine while accelerating, preserves much kinetic energy by inertia moment at travel speed, and releases the kinetic energy to the air while decelerating by the break system. If we accumulate the kinetic energy while decelerating and reuse the energy at the accelerating stage, then it can elevate the fuel efficiency, reduce the emission and improve the motive power. This paper proposes a hydraulic type energy regenerative system which converts the kinetic energy into hydraulic energy at the stage of deceleration and reuses it at the starting and accelerating stage of vehicles. The test equipment which has the field condition of city bus was prepared to evaluate the performance for energy regeneration. The test results show that both energy regeneration efficiency and fuel efficiency are improved significantly and the emission is reduced notably.