• Title/Summary/Keyword: accelerated lifetime test

Search Result 157, Processing Time 0.026 seconds

Accelerated Life Evaluation of Propeller Shaft for Forklift Truck (지게차용 추진축의 가속 수명 평가)

  • Kim, Do-Sik;Sung, Baek-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1221-1229
    • /
    • 2014
  • This paper proposes an approach for predicting the fatigue life of a propeller shaft of a forklift truck by an accelerated life test method. The accelerated life test method adopted in this study is the calibrated accelerated life test, which is highly effective in the prediction of the lifetime and enables significant reduction of the test time as well as a quantification of reliability in the case of small sample sizes. First, the fatigue test was performed under two high stress levels, and then, it was performed by setting low stress levels in consideration of the available test time and extrapolation. Major reliability parameters such as the lifetime, accelerated power index, and shape parameter were obtained experimentally, and the experimentally predicted lifetime of the propeller shaft was verified through comparison with results of an analysis of load spectrum data under actual operating conditions.

Lifetime Assessment of Electronic Watt-hour Meters (전자식 전력량계의 수명평가)

  • Seol, Ieel-Ho;Park, Jung-Won
    • Journal of Applied Reliability
    • /
    • v.9 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • Recently mechanical watt-hour meters are being replaced by electronic watt-hour meters. The replacement period of mechanical watt-hour meters is 7 years. This period is based on long term historical data. The replacement period of electronic watt-meters is also 7 years. This period is determined using the replacement period of mechanical watt-hour meters. However lifetime of mechanical watt-hour meters is different from the lifetime of electronic meters. In order to determine desirable replacement period of electronic watt-hour meters, accelerated life tests of major components in electronic watt-hour meters were performed. The test results showed that LCD was the component which had the shortest lifetime. In this paper, lifetime of electronic watt-hour meters manufactured by 3 company was estimated and life test standard for LCD was developed.

  • PDF

A Study on Goodness of Fit Test in Accelerated Life Tests (가속수명시험에 대한 적합도 검정에 관한 연구)

  • Lee, Woo-Dong;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.37-46
    • /
    • 1996
  • In this paper, we introduce the goodness of fit test procedure for lifetime distribution using step stress accelerated lifetime data. Using the nonpapametric estimate of acceleration factor, we prove the strong consistence of empirical distribution function under null hypothesis. The critical vailues of Kolmogorov-Smirnov, Anderson-Darling, Cramer-von Mises statistics are computed when the lifetime distibution is assumed to be exponential and Weibull. The power of test statistics are compared through Monte-Cairo simulation study.

  • PDF

Storage lifetime estimation of detonator in Fuse MTSQ KM577A1 (기계식 시한 신관 KM577A1용 기폭관 저장수명 예측)

  • Chang, Il-Ho;Park, Byung-Chan;Hwang, Taek-Sung;Hong, Suk-Whan;Back, Seung-Jun;Son, Young-Kap
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.4
    • /
    • pp.504-511
    • /
    • 2010
  • A fuze detonator comprising star shells is an important device so that its failure usually leads to failure of the shells. In this paper, accelerated degradation tests of RD1333 (lead azide) using temperature stress were performed, and then degradation data of explosive power for the detonator were analyzed to predict the storage lifetime of detonator. Degradation data analysis to estimate the storage lifetime is based on a distribution-based degradation process. Statistical distribution parameters of explosive power degradation measures at each time were estimated for each temperature level, and then reliability of the detonator for each accelerated temperature level was estimated using both time-varying distribution parameters and critical level of explosive power. Arrhenius model was applied to estimate storage lifetime of the detonator under the field temperature condition. Accelerated distribution-based degradation analysis to estimate storage lifetime is explained in detail, and estimation results are compared to field data of storage lifetime in this paper.

Useful lifetime prediction of rail-pad by using the accelerated heat aging test (가속 열노화시험을 통한 레일패드 사용수명예측)

  • Woo, Chang-Su;Park, Hyun-Sung;Choi, Byung-Ik;Yang, Sin-Chu;Jang, Sung-Yep;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1010-1015
    • /
    • 2009
  • Rail-pad is an important and readily replaceable component of a railway track, as it is the elastic layer between the rail and the sleeper. Characteristics and useful lifetime prediction of rail-pad was very important in design procedure to assure the safety and reliability. In order to investigate the useful lifetime, the accelerate test were carried out. Accelerated test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful lifetime prediction for rail-pads were proposed.

  • PDF

An Accelerated Life Test of Thermoelectric Module for Water Purifier (정수기 적용 열전모듈의 가속수명시험)

  • Moon, Ji Seob;Lee, Sung Min;Jeong, Seon Yong;Kim, Myung Soo
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • This paper presents an accelerated life test to estimate the lifetime of thermoelectric module for home water purifier. Clamping force and thermal cycle are selected as accelerating variables through the technical review about failure mechanism. It is assumed that its lifetime follows weibull distribution. The relationship, acceleration factor, and BP life at design condition are estimated by analyzing the accelerated life test data.

Lifetime Prediction of Automotive Airbag Fabrics (자동차 에어백용 원단의 수명예측)

  • Koo, Hyun-Jin;Cho, Hang-Won;Chang, Gap-Shik
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • The airbag module is an inflatable restraint system that inflates within 0.05 seconds automatically in a collision to protect the occupants. The airbag fabrics used in the module are required to have the good resilience and strength and also to have retained at least 80% of mechanical properties after using longer than 10 years. In this study, we develop an accelerated test method in order to predict the lifetimes of airbag. In this test, we select temperature and humidity as environmental stresses by analyzing the failure mechanisms of coated and uncoated nylon 66 fabrics. It is found that the degradation of airbag fabrics is effectively accelerated under the combined conditions of high temperature and humidity. Analyzing the results of the accelerated test, the lifetimes of airbag fabrics are predicted to be longer than 10 years.

  • PDF

Reliability assessment of mica high voltage capacitor through environmental test and accelerated life test (마이카 고전압 커패시터의 환경시험과 가속 수명시험을 통한 신뢰성 평가)

  • Park, Seong Hwan;Ham, Young Jae;Kim, Jeong Seok;Kim, Kyoung Hun;So, Seong Min;Jeon, Min Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.270-275
    • /
    • 2019
  • Mica capacitor is being adopted for high voltage firing unit of guided weapon system because of its superior impact enduring property relative to ceramic capacitor. Reliability of localized mica high voltage capacitors was verified through environmental test like terminal strength test, humidity test, thermal shock test and accelerated life test for application to high voltage firing unit. Failure mode of mica capacitor is a decrease of insulation resistance and its final dielectric breakdown. Main constants of accelerated life model were derived experimentally and voltage constant and activation energy were 5.28 and 0.805 eV respectively. Lifetime of mica capacitor at normal use condition was calculated to be 38.5 years by acceleration factor, 496, and lifetime at accelerated condition and this long lifetime confirmed that mica high voltage capacitor could be applied for firing unit.

A Study of Two-Mode Failure Model for Crystalline Si Photovoltaic Module (실리콘 태양전지 모듈의 two-mode failure 모델의 연구)

  • Choi, Ki Young;Oh, Won Wook;Kang, Byung Jun;Kim, Young Do;Tark, Sung Ju;Kim, Donghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • To guarantee 20-25 years to the lifetime of the PV modules without failure, reliability test of the module is very important. Field-aged test of the outdoor environment is required. However, due to time constraints, accelerated testing is required to predict the lifetime of PV modules and find causes of failure. Failure is caused by many complex phenomena. In this study, we experimented two accelerated tests about corrosion and fatigue, respectively. First, temperature cycling test for fatigue were tested and Coffin-Manson equation was analyzed. Second, damp heat test for corrosion were tested and Eyring equation were analyzed. Finally, using two-mode failure model, we suggest a new lifetime model that analyze the phenomenon by combining two kinds of data.

  • PDF

Application of Accelerated Degradation Testing for VFD (Vacuum Fluorescent Display) (VFD(Vacuum Fluorescent Display) 가속열화시험 응용사례)

  • Bae, Suk-Joo
    • Journal of Applied Reliability
    • /
    • v.5 no.4
    • /
    • pp.413-425
    • /
    • 2005
  • As an alternative to traditional life testing, degradation tests can be effective in assessing product reliability when measurements of degradation leading to failure can be observed. This article presents an accelerated degradation testing for vacuum fluorescent displays (VFDs). The accelerated degradation model is based on Arrhenius-lifetime relationship for cathode temperatures. We compare the results between accelerated degradation test and test at normal use condition. Accelerated degradation test for display devices is observed as an efficient method to warrantee product reliability to customers, as well as a tool to save time and costs.

  • PDF