• Title/Summary/Keyword: accelerated carbonation

Search Result 95, Processing Time 0.025 seconds

Durability Properties and Microstructure of Ground Granulated Blast Furnace Slag Cement Concrete

  • Divsholi, Bahador Sabet;Lim, Tze Yang Darren;Teng, Susanto
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.157-164
    • /
    • 2014
  • Ground granulated blast-furnace slag (GGBS) is a green construction material used to produce durable concrete. The secondary pozzolanic reactions can result in reduced pore connectivity; therefore, replacing partial amount of Portland cement (PC) with GGBS can significantly reduce the risk of sulfate attack, alkali-silica reactions and chloride penetration. However, it may also reduce the concrete resistance against carbonation. Due to the time consuming process of concrete carbonation, many researchers have used accelerated carbonation test to shorten the experimental time. However, there are always some uncertainties in the accelerated carbonation test results. Most importantly, the moisture content and moisture profile of the concrete before the carbonation test can significantly affect the test results. In this work, more than 200 samples with various water-cementitious material ratios and various replacement percentages of GGBS were cast. The compressive strength, electrical resistivity, chloride permeability and carbonation tests were conducted. The moisture loss and microstructure of concrete were studied. The partial replacement of PC with GGBS produced considerable improvement on various properties of concrete.

A Study on Corrosion Resistance of Reinforced Concrete Structures using Natural Inorganic Minerals (천연 무기 광물계 혼화재료를 혼입한 철근콘크리트 구조물의 부식저항성에 관한 연구)

  • Tae, Sung Ho;Park, Jae Young;Kim, Jae Young;Park, Jae Seung;Kyung, Je Woon;Nam, Ho Yoon
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.127-133
    • /
    • 2007
  • As a fundamental study on the corrosion resistance of reinforced concrete structures using Natural Inorganic Minerals exposed to carbonation environment, The test specimens were concrete(W/C=60%) with Natural Inorganic Minerals content of 0%, 10%. Accelerated carbonation and autoclave corrosion accelerated curing were then conducted with them. The corrosion resistance of steel in concrete with Natural Inorganic Minerals content of 0%, 10% was examined by corrosion form, half-cell potential, polarization resistance, corrosion area and weight loss after 24 hours of autoclave corrosion accelerated curing.The results of the study showed that as for steel in concrete with Natural Inorganic Minerals content of 10%, the corrosion resistance was more excellent than steel in concrete with Natural Inorganic Minerals content of 0%.

Application of Accelerated Carbonation Reaction for Low Alkalinity of Recycled Aggregate

  • Lee, Jong-Chan;Lee, Sae-Hyun;Yoon, Sang-Hyuck;Song, Tae-Hyeob
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.515-522
    • /
    • 2011
  • As Construction and Demolition (C&D) debris increases every year, systems have been adopted to compel the use of recycled aggregate made from C&D debris, and the use of recycled aggregate in the construction field has increased. But environmental problems linked to the alkalinity of recycled aggregate have occurred, and a study on approaches to lower the alkalinity of recycled aggregate is needed. It was certified by this study that a large amount of recycled aggregate could be carbonated in the C&D debris midterm-treatment field. As a result, the density and the water absorption of recycled aggregate after carbonation reaction was improved, and pH of recycled aggregate was lowered from over 11 to 9.4. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), and Thermogravimetry/Differential Thermal Analysis (TG/DTA) methods also indicated the carbonation of recycled aggregate.

Effect of γ-C2S Addition on the Properties of GGBFS Containing Mortar in Accelerated Carbonation Curing (가속 탄화 조건에서 γ-C2S 첨가가 모르타르 함유 GGBFS의 특성에 미치는 영향)

  • Tran, Duc Thanh;Lee, Han-seung;Singh, Jitendra Kumar
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.33-34
    • /
    • 2020
  • 𝛾-dicalcium silicate (𝛾-C2S) is characterized by its strong carbonation reactivity and has the prospect to be utilized as a building material with the added benefit of CO2 capture. This paper aims to point out the impact of 𝛾-C2S on the microstructure characteristics and mechanical properties of GGBFS paste, and mortar samples. The compressive strength of 𝛾-C2S added GGBFS cement mortar is higher compared to without 𝛾-C2S in accelerated carbonation (AC) up to 14 days of curing but once the curing duration is increased, there is no significant improvement in compressive strength. This study suggests that 𝛾-C2S can capture the atmospheric CO2 (mostly generated from cement and metallurgy industries) and utilized in construction.

  • PDF

Durability Characteristics of RC containing Different Chloride Contents based on Long Term Exposure Test and Accelerated Test (장기폭로시험과 촉진시험에 근거한 염화물 함유량에 따른 철근콘크리트의 내구특성)

  • 권성준;송하원;신수철;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.759-762
    • /
    • 1999
  • The concrete structures possessing good structural integrity can face durability problems due to deteriorations of concrete structures under various environmental conditions. The durability problems weaken the structural integrity in the long run. Especially, the excessive use of sea sand causes serious reinforcement corrosion and carbonation in concrete structures. An accelerated test is often used to predict deterioration as a qualitative measure, but without long term exposure test results or understanding of the relationship between the accelerated test and the long term exposure test, the accelerated test result alone can not be used effectively as a quantitative measure. In this paper, a methodology is proposed to predict the long term deteriorations, based on the result of the short-term accelerated test, of concrete containing different contents of chloride ions. Then, the correlation between two results on the steel corrosion ratio and the carbonation depth is analyzed for concrete with different chloride contents.

  • PDF

Optimum Carbonation Reforming Period of Recycled Aggregate Based on the Microscopic Carbonation Conduct (미시적 탄산화 거동에 기초한 순환 골재의 최적 탄산화 개질 기간)

  • Shin, Jin-Hak;Kim, Han-Sic;Ha, Jung-Soo;Chung, Lan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.329-340
    • /
    • 2016
  • Increase in demotion and repair works on buildings in the construction market generates a large amount of construction waste. Recycling of construction waste is important for saving of resources, preservation of environment and constant advance of the construction industry. Accordingly, the environmental and economic value of recycled aggregate, which is produced after waste concrete is crushed, is increasingly highlighted. It is generally known that compared to concrete made of ordinary aggregate, concrete made of recycled aggregate has low quality, and the low quality is dependent on the amount of the bonding heterogeneous (cement paste and mortar) as well as the amount of the pores within the bonding heterogeneous. Reports on carbonation mechanism shows that the pores of cement-based materials are filled up by the progress of carbonation. Therefore, this study aims at an estimation of the period for optimum carbonation reforming appropriate for the thickness of the bonding heterogeneous of recycled aggregate, based on carbonation mechanism, with a view to improving the product quality by means of filling up the pores of the bonding heterogeneous of recycled aggregate. This study drew the carbonation depth according to the passage of age by calculating the bonding ratio and bonding thickness of the bonding heterogeneous as against the particle size distribution of recycled aggregate as well as by chemical quantitative analysis according to the age of accelerated carbonation of mock-up samples imitating bonding heterogeneous. Based on the correlation between the age of accelerated carbonation and carbonation depth, this study also proposed the estimated period of carbonation reforming of recycled aggregate appropriate for the thickness of the bonding heterogeneous.

A Fundamental Study on the Prediction of Carbonation Progress Using Deep Learning Algorithm Considering Mixing Factors (배합인자를 고려한 딥러닝 알고리즘 기반 탄산화 진행 예측에 관한 기초적 연구)

  • Jung, Do-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.30-31
    • /
    • 2019
  • Carbonation of the root concrete reduces the durability of the reinforced concrete, and it is important to check the carbonation resistance of the concrete to ensure the durability of the reinforced concrete structure. In this study, a basic study on the prediction of carbonation progress was conducted by considering the mixing conditions of concrete using deep learning algorithm during the theory of artificial neural network theory. The data used in the experiment used values that converted the carbonation velocity coefficient obtained from the mixing conditions of concrete and the accelerated carbonation experiment into the actual environment. The analysis shows that the error rate of the deep learning model according to the Hidden Layer is the best for the model using five layers, and based on the five Hidden layers, we want to verify the predicted performance of the carbonation speed coefficient of the carbonation test specimen in which the exposure experiment took place in the real environment.

  • PDF

Prediction of Carbonation Progress Using Diffusion Coefficient of $CO_2$ in the Atmosphere ($CO_2$ 산계수를 이용한 일반 대기환경에서의 중성화진행예측)

  • Kang, Suk-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.141-147
    • /
    • 2010
  • The rate of carbonation is usually low in the natural environment due to the low $CO_2$ concentration in the atmosphere. Therefore, investigation of carbonation is usually conducted under accelerated testing conditions so as to speed up the process. This study is to predict carbonation progress by mathematical model, based on the diffusions of $CO_2$ and its reaction with $Ca(OH)_2$ in carbonation progressing region, in the atmosphere. To predict of carbonation progress in the atmosphere, we adopted a diffusion coefficient of $CO_2$ that agreed well the experimental value obtained by the accelerated carbonation test. Consequently the model can predict the rate of carbonation of concrete exposed in the atmosphere regardless of finishing materials.

Experimental Study on Accelerated Carbonation Characteristics of OPC Paste for CSC-Based Low Carbon Precast Concrete Products (CSC 기반 저탄소 콘크리트 2차제품 제조를 위한 OPC 페이스트의 촉진탄산화 특성에 관한 실험적 연구)

  • Yoon, Jun-Tae;Kim, Young-Jin;Sim, Sang-Rak;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.285-295
    • /
    • 2024
  • This study investigated the impact of accelerated carbonation on Ordinary Portland Cement(OPC) paste that had undergone steam curing at 500℃·hr. Two carbonation environments were examined: atmospheric carbonation(1atm, 20% CO2) and pressurized carbonation(5atm, 99% CO2). Chemical analysis using X-ray diffraction(XRD) and Fourier-Transform Infrared spectroscopy(FT-IR) were conducted, along with physical characterization via scanning electron microscopy(SEM) and compressive strength testing. Results indicated that atmospheric carbonation with 20% CO2 concentration significantly densified the internal microstructure of the OPC paste, leading to enhanced compressive strength. Conversely, pressurized carbonation at 5atm with 99% CO2 concentration resulted in rapid densification of the surface structure, which hindered CO2 diffusion into the sample. This limited the extent of carbonation and prevented the improvement of physical properties.