• 제목/요약/키워드: accelerated carbonation

검색결과 97건 처리시간 0.02초

해사를 잔골재를 사용한 콘크리트의 촉진중성화에 관한 연구 (A Study on the Accelerated Carbonation of the Concrete Using Sea Sand for Fine Aggregate)

  • 신상태;유택동;최기봉;서치호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권4호
    • /
    • pp.163-171
    • /
    • 1999
  • In this study, we executed fundamental experiment to investigate properties of accelerated carbonation with changing chloride content of concrete used sea sand in order to examine durability. So we obtained the results of following properties of mechanics, durability, concrete with sea sand, determined concrete w/C 30%, 40%, 50%, and fine aggregate 40% and changing containing chloride 0, 0.3, 0.6, $0.9kg/m^3$ by the experiment of accelerated neutralization. The results of this study as follows: 1) As result of changing chloride content of concrete used sea sand augmented in stages $0.3kg/m^3$, accelerated carbonation was increased as increment chloride content. The increment depth was decreased as it went long term age. It was shown the chloride content effected increment of carbonation depth in concrete 2) As a result of changing W/C of concrete used sea sand augmented in stages 10% at a time from 30% to 50%, accelerated carbonation depth of concrete was increased as W/C ratio. 3) As the carbonation concrete used sea sand, compressive strength between 8 weeks and accelerated carbonation depth of 1 weeks, 2 weeks, 4 weeks, 8 weeks was inversion proportion.

  • PDF

고로슬래그 미분말과 플라이애시를 사용한 비소성 시멘트 모르타르의 촉진 탄산화에 따른 압축 강도 특성 (Properties of Compressive Strength after Accelerated Carbonation of Non-Sintered Cement Mortar Using Blast Furnace Slag and Fly Ash)

  • 류지수;나형원;형원길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.297-298
    • /
    • 2023
  • In the concrete industry, efforts are being made to reduce CO2 emissions, and technologies that collect, store, and utilize CO2 have recently been studied. This study analyzed the change in compressive strength after the accelerated carbonation test of Non-Sintered Cement(NSC) mortar. Type C Fly Ash and Type F Fly Ash were mixed in a 1:1 ratio and then mixed with Blast Furnace Slag fine powder to produce NSC. The mortar produced was cured underwater until the target age. In addition, an accelerated carbonation test was conducted under the condition of a concentration of 5 (±1.0%) of CO2 gas for 14 days. The mortar compressive strength was measured before and after 14 days of accelerated carbonation test based on the 7th and 28th days of age. As a result of the experiment, the compressive strength was improved in all binder. In general, the compressive strength of NSC mortar subjected to the accelerated carbonation test was similar to that of Ordinary Portland Cement(OPC) mortar not subjected to the accelerated carbonation test.

  • PDF

급속 촉진 탄산화 시험을 통한 플라이애쉬 콘크리트의 탄산화 특성 연구 (A Study on the Carbonation Characteristics of Fly Ash Concrete by Accelerated Carbonation Test)

  • 최성;이광명;정상화;김주형
    • 콘크리트학회논문집
    • /
    • 제21권4호
    • /
    • pp.449-455
    • /
    • 2009
  • 최근 각종 산업화에 따른 탄산가스 배출량의 증가는 철근콘크리트구조물의 탄산화를 촉진시켜 구조물의 내 구성을 저하시키고 있다. 이미 선진 각국에서는 탄산가스 증가량을 고려하여 철근콘크리트구조물의 탄산화에 관한 안 전 관리 대책을 마련하고 있지만 현재까지도 실 구조물의 탄산화를 정확하게 예측하기 어렵고 탄산화 측정하기 위해서 는 많은 시간과 노력이 소요된다. 최근에 개발된 급속 촉진 탄산화 시험은 대기 중 $CO_2$농도를 100%로 하여 보다 신속 하게 탄산화 시험 결과를 제공할 수 있다. 본 논문에서는 플라이애쉬 콘크리트의 탄산화 특성을 알아보기 위하여 기존 에 주로 사용된 촉진 탄산화 시험과 급속 촉진 탄산화 시험에 의한 탄산화 결과를 비교, 분석하였다. 또한 장기재령에 서 플라이애쉬 콘크리트의 탄산화 특성을 알아보기 위하여 급속 촉진 탄산화 시험을 이용하여 재령 180일의 콘크리트 시편의 탄산화 실험을 수행하였다. 그 결과 플라이애쉬 콘크리트는 초기재령에서 탄산화에 다소 취약하였지만, 장기재 령에서는 OPC에 비하여 탄산화 저항성이 향상됨을 알 수 있었다.

가속탄산화를 통한 Ca-rich Waste Mineral의 정량적인 CO2 고용량 평가 (Quantitative Evaluation of CO2 Sequestration in Ca-rich Waste Mineral for Accelerated Carbonation)

  • 남성영;엄남일;안지환
    • 한국세라믹학회지
    • /
    • 제51권2호
    • /
    • pp.64-71
    • /
    • 2014
  • Accelerated carbonation is a technique that can be used as a CCS technology for $CO_2$ sequestration of approximately 5~20% in a stable solid through the precipitation of carbonate. An alkaline inorganic waste material such as ash, slag, and cement paste are generated from incinerators, accelerated carbonation offers the advantage of lower transport and processing costs at the same generation location of waste and $CO_2$. In this study, we evaluated an amount of $CO_2$ sequestration in various types of inorganic alkaline waste processed by means of accelerated carbonation. A quantitative evaluation of $CO_2$ real sequestration based on a TG/DTA analysis, the maximum 118.88 $g/kg_{-waste}$ of $CO_2$ in paper sludge fly ash, the maximum 134.46 $g/kg_{-waste}$ of $CO_2$ in municipal solid waste incinerator bottom ash, the maximum 9.72 $g/kg_{-waste}$ of $CO_2$ in industrial solid waste incinerator fly ash, and the maximum $18.19g/kg_{-waste}$ of $CO_2$ in waste cement paste.

산업폐기물의 가속 탄산화법을 이용한 CO2 고용화 및 중금속 안정화 특성 연구 (Stabilization of Heavy Metal and CO2 Sequestration in Industrial Solid Waste Incineration Ash by Accelerated Carbonation)

  • 정성명;남성영;엄남일;서주범;유광석;엄태인;안지환
    • 광물과산업
    • /
    • 제26권
    • /
    • pp.1-12
    • /
    • 2013
  • In this study, an accelerated carbonation process was applied to stabilize hazardous heavy metals of industrial solid waste incineration (ISWI) bottom ash and fly ash, and to reduce $CO_2$ emissions. The most commonly used method to stabilize heavy metals is accelerated carbonation using a high water-to-solid ratio including oxidation and carbonation reactions as well as neutralization of the pH, dissolution, and precipitation and sorption. This process has been recognized as having a significant effect on the leaching of heavy metals in alkaline materials such as ISWI ash. The accelerated carbonation process with $CO_2$ absorption was investigated to confirm the leaching behavior of heavy metals contained in ISWI ash including fly and bottom ash. Only the temperature of the chamber at atmospheric pressure was varied and the $CO_2$ concentration was kept constant at 99% while the water-to-solid ratio (L/S) was set at 0.3 and $3.0dm^3/kg$. In the result, the concentration of leached heavy metals and pH value decreased with increasing carbonation reaction time whereas the bottom ash showed no effect. The mechanism of heavy metal-stabilization is supported by two findings during the carbonation reaction. First, the carbonation reaction is sufficient to decrease the pH and to form an insoluble heavy metal-material that contributes to a reduction of the leaching. Second, the adsorbent compound in the bottom ash controls the leaching of heavy metals; the calcite formed by the carbonation reaction has high affinity of heavy metals. In addition, approximately 5 kg/ton and 27 kg/ton $CO_2$ were sequestrated in ISWI bottom ash and fly ash after the carbonation reaction, respectively.

  • PDF

골재 지역 특성이 불분명한 콘크리트의 탄산화 속도 및 강도 상관성 (Relationship between Carbonation Rate and Compressive Strength in Concrete with Unclear Local Aggregate Qualities)

  • 남진원;김형기;권성준
    • 한국건설순환자원학회논문집
    • /
    • 제12권3호
    • /
    • pp.246-253
    • /
    • 2024
  • 혼화재(슬래그 미분말 또는 플라이애시)를 혼입한 콘크리트가 재령 초기에 촉진 탄산화 실험에 노출될 경우, 수화반응과 포졸란 반응, 그리고 탄산화 반응이 동시에 발생하므로 매우 복합한 탄산화 거동이 발생한다. 특히 골재의 품질이 좋지 못한 경우에는 강도 특성과 탄산화 거동 특성이 명확하지 않다. 본 연구에서는 정보가 명확하지 않은 3개 산지 골재(A, B, C)를 대상으로 3 수준의 배합강도 등급 (24 MPa, 27 MPa, 30 MPa)의 콘크리트 시편을 제조하였다. 재령 7일과 28일 압축강도 실험을 수행하였으며, 촉진 탄산화 실험을 8주간 수행하여 탄산화 속도계수를 도출하였다. 도출된 압축강도, 탄산화 속도계수를 각 배합특성 및 골재특성을 고려하여 상관성을 분석하였다. 또한 국내 탄산화 설계식을 이용하여 목표 내구수명에 따른 최소 피복두께를 도출하였으며, 탄산화 설계의 변수(방향계수 및 유효 물-결합재 상수)의 보완 필요성을 제시하였다.

Characteristic of Steel Corrosion in Carbonated Concrete

  • You, JeiJun;Ohno, Yoshiteru
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.130-135
    • /
    • 2005
  • In this study, accelerated corrosion tests were conducted on concrete specimens with and without accelerated carbonation beforehand for the purpose of elucidating the effects of carbonation, cover depth, and water-cement ratio (W/C) on the reinforcement corrosion. During testing, the corrosion current between the anode steel and cathode stainless steel was measured to continuously monitor the progress of corrosion throughout the test period, thereby investigating the mechanism of reinforcement corrosion and the relationship between corrosion and crack width, as well as other parameters.

Optimization of Carbonated Cellulose Fiber-Cement Composites

  • Won, Jong-Pil;Bae, Dong-In
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.79-89
    • /
    • 2000
  • This research developed an accelerated curing processe for cellulose fiber reinforced cement composites using vigorous reaction between carbon dioxide and cement paste. A wet-processed cellulose fiber reinforced cement system was considered. Carbonation curing was used to complement conventional accelerated curing. The parametric study followed by optimization investigation indicated that the carbonation curing can enhance the productivity and energy efficiency of manufacturing cellulose fiber reinforced cement composites. This also adds environmental benefits to the technical and economical advantages of the technology.

  • PDF

Corrosion Resistance of Cr-Bearing Rebar to Macrocell Corrosion Environment Induced by Localized Carbonation

  • Tae, Sung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권1E호
    • /
    • pp.17-22
    • /
    • 2006
  • Artificial cracks were made in the cover concrete of specimens embedding ten types of steel rebars of different Cr contents. The research aims for developing Cr-bearing steel rebars resistant to macrocell corrosion environments induced by cracking in cover concrete. The cracks were subjected to intensive penetration of carbon dioxide (carbonation specimens) to form macrocells. The carbonation specimens were then treated with accelerated corrosion curing, during which current macrocell corrosion density was measured. The corrosion area and loss from corrosion were also measured at the end of 105 cycles of this accelerated curing. The results of the study showed that Cr-bearing steel with Cr content of 5% or more suppressed corrosion in a macrocell corrosion environment induced by the differences in the pH values due to carbonation of cracked parts. Cr-bearing steels with Cr content of 7% or more are proven to possess excellent corrosion resistance.

Enhancement of the Characteristics of Cement Matrix by the Accelerated Carbonation Reaction of Portlandite with Supercritical Carbon Dioxide

  • Kim, In-Tae;Kim, Hwan-Young;Park, Geun-Il;Yoo, Jae-Hyung;Kim, Joon-Hyung;Seo, Yong-Chil
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.586-591
    • /
    • 2001
  • This research investigated the feasibility of the accelerated carbonation of cement waste forms with carbon dioxide in a supercritical state. Hydraulic cement has been used as a main solidification matrix for the immobilization of radioactive and/or hazardous wastes. As a result of the hydration reaction for major compounds of portland cement, portlandite (Ca(OH)$_2$) is present in the hydrated cement waste form. The chemical durability of a cement form is expected to increase by converting portlandite to the less soluble calcite (CaCO$_3$). For a faster reaction of portlandite with carbon dioxide, SCCD (supercritical carbon dioxide) rather than gaseous $CO_2$, in ambient pressure is used. The cement forms fabricated with an addition of slated lime or Na-bentonite were cured under ambient conditions for 28days and then treated with SCCD in an autoclave maintained at 34$^{\circ}C$ and 80atm. After SCCD treatment, the physicochemical properties of cement matrices were analyzed to evaluate the effectiveness of accelerated carbonation reaction. Conversion of parts of portlandite to calcite by the carbonation reaction with SCCD was verified by XRD (X-ray diffraction) analysis and the composition of portlandite and calcite was estimated using thermogravimetric (TG) data. After SCCD treatment, tile cement density slightly increased by about 1.5% regardless of the SCCD treatment time. The leaching behavior of cement, tested in accordance with an ISO leach test method at 7$0^{\circ}C$ for over 300 days, showed a proportional relationship to the square root of the leaching time, so the major leaching mechanism of cement matrix was diffusion controlled. The cumulative fraction leached (CFL) of calcium decreased by more than 50% after SCCD treatment. It might be concluded that the enhancement of the characteristics of a cement matrix by an accelerated carbonation reaction with SCCD is possible to some extent.

  • PDF